Refine your search:

Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by section
Microscopy, Electron, Scanning: Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although Scanning transmission electron microscopy also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of Transmission electron microscopy.
 JoVE Biology

Scanning Electron Microscopy of Macerated Tissue to Visualize the Extracellular Matrix

1Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 2Department of Medicine, Vanderbilt University Medical Center, 3Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 4Cardiovascular Institute, Maine Medical Center

JoVE 54005

 Science Education: Essentials of Analytical Chemistry

Scanning Electron Microscopy (SEM)

JoVE Science Education

Source: Laboratory of Dr. Andrew J. Steckl — University of Cincinnati

A scanning electron microscope, or SEM, is a powerful microscope that uses electrons to form an image. It allows for imaging of conductive samples at magnifications that cannot be achieved using traditional microscopes. Modern light microscopes can achieve a magnification of ~1,000X, while typical SEM can reach magnifications of more than 30,000X. Because the SEM doesn’t use light to create images, the resulting pictures it forms are in black and white.  Conductive samples are loaded onto the SEM’s sample stage. Once the sample chamber reaches vacuum, the user will proceed to align the electron gun in the system to the proper location. The electron gun shoots out a beam of high-energy electrons, which travel through a combination of lenses and apertures and eventually hit the sample. As the electron gun continues to shoot electrons at a precise position on the sample, secondary electrons will bounce off of the sample. These secondary electrons are identified by the detector. The signal found from the secondary electrons is amplified and sent to the monitor, creating a 3D image. This video will demonstrate SEM sample preparation, operation, and imaging capabilities.

 JoVE Bioengineering

From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data

1Life Sciences Division, Lawrence Berkeley National Laboratory, 2Joint Bioenergy Institute, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 3National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory

JoVE 51673

 JoVE Bioengineering

Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles

1South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales Australia, 2School of Medicine, Western Sydney University, 3Correlative Microscopy Group, Ingham Institute for Applied Medical Research, 4Electron Microscopy Laboratory, Department of Anatomical Pathology, Sydney South West Pathology Service, New South Wales Health Pathology, 5School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia

JoVE 54307

 JoVE Bioengineering

Generation of Scalable, Metallic High-Aspect Ratio Nanocomposites in a Biological Liquid Medium

1Biophysics Department, Centenary College of Louisiana, 2Department of Chemistry, Louisiana Tech University, 3Department of Integrative Physiology, University of North Texas Health Sciences Center, 4Biomedical Engineering, Louisiana Tech University, 5Institute for Micromanufacturing, Louisiana Tech University

JoVE 52901

 JoVE Neuroscience

Preparation of Primary Neurons for Visualizing Neurites in a Frozen-hydrated State Using Cryo-Electron Tomography

1Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 2Department of Neuroscience, Baylor College of Medicine, 3Department of Neuroscience, University of California at San Diego, 4National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine

JoVE 50783

 JoVE Engineering

Atomically Traceable Nanostructure Fabrication

1Zyvex Labs, 2Department of Physics, University of Texas at Dallas, 3Department of Materials Science and Engineering, University of Texas at Dallas, 4Materials Science and Engineering, University of North Texas, 5National Institute of Standards and Technology

JoVE 52900

 JoVE Engineering

In Situ Time-dependent Dielectric Breakdown in the Transmission Electron Microscope: A Possibility to Understand the Failure Mechanism in Microelectronic Devices

1Fraunhofer Institute for Ceramic Technologies and Systems, 2Dresden Center for Nanoanalysis, Technische Universität Dresden, 3Globalfoundries Fab 8, 4Globalfoundries Fab 1

JoVE 52447

 JoVE Biology

High-Throughput, Multi-Image Cryohistology of Mineralized Tissues

1Department of Reconstructive Sciences, University of Connecticut Health Center, 2Department of Computer Science and Engineering, University of Connecticut, 3Department of Orthopaedic Surgery, University of Connecticut Health Center, 4Department of Orthopaedics, University of Rochester

JoVE 54468

 JoVE Medicine

Intraoperative Detection of Subtle Endometriosis: A Novel Paradigm for Detection and Treatment of Pelvic Pain Associated with the Loss of Peritoneal Integrity

1Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Greenville Hospital System, 2Department of Pathology, Duke University Health System, 3Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Duke University

JoVE 4313

 JoVE Bioengineering

Porous Silicon Microparticles for Delivery of siRNA Therapeutics

1Department of Nanomedicine, Houston Methodist Research Institute, 2MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, 3Pediatrics Department of Union Hospital, Huazhong University of Science and Technology, 4CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, 5Department of Medicine, Weill Cornell Medical College, 6Department of Cell and Developmental Biology, Weill Cornell Medical College

JoVE 52075

More Results...
simple hit counter