Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Night Vision: Function of the human eye that is used in dim illumination (scotopic intensities) or at nighttime. Scotopic vision is performed by Retinal rod photoreceptors with high sensitivity to light and peak absorption wavelength at 507 nm near the blue end of the spectrum.
 JoVE Neuroscience

Vibratome Sectioning Mouse Retina to Prepare Photoreceptor Cultures

1Department of Genetics, UMR_S 968, Institut de la Vision, 2Department of Visual Information, UMR_S 968, Institut de la Vision, 3Exploratory Team, UMR_S 968, Institut de la Vision, 4Sorbonne Universités, Paris 06, UMR_S 968, Institut de la Vision, 5INSERM, U968, Institut de la Vision, 6CNRS, UMR_7210, Institut de la Vision


JoVE 51954

 JoVE Behavior

Recording Mouse Ultrasonic Vocalizations to Evaluate Social Communication

1Human Genetics and Cognitive Functions, University Paris Diderot, CNRS UMR 3571, Institut Pasteur, 2Neurophysiology and Behavior, University Pierre et Marie Curie Paris 6, CNRS UMR 7102, 3Bio Image Analysis, CNRS URA 2582, Institut Pasteur


JoVE 53871

 JoVE Neuroscience

Imaging Ca2+ Dynamics in Cone Photoreceptor Axon Terminals of the Mouse Retina

1Institute for Ophthalmic Research, University of Tübingen, 2Graduate School of Cellular & Molecular Neuroscience, University of Tübingen, 3Bernstein Centre for Computational Neuroscience, University of Tübingen, 4Molecular Genetics Laboratory, University of Tübingen, 5Centre for Ophthalmology, University of Tübingen


JoVE 52588

 JoVE Medicine

Transcriptomic Analysis of Human Retinal Surgical Specimens Using jouRNAl

1U968, Institut National de la Santé et de la Recherche Médicale, 2UMR S 968, Université Pierre et Marie Curie, 3UMR 7210, Centre National de la Recherche Scientifique, 4Départment d'Ophtalmologie, Centre Hospitalier Universitaire de Bordeaux


JoVE 50375

 Science Education: Essentials of Neuropsychology

Physiological Correlates of Emotion Recognition

JoVE Science Education

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California

The autonomic nervous system (ANS) controls the activity of the body's internal organs and regulates changes in their activity depending on the current environment. The vagus nerve, which innervates many of the internal organs, is an important part of the system. When our brain senses danger, vagal tone is inhibited, leading to a set of changes in the body designed to make us more prepared to fight or flee; for example, our heart rate increases, our pupils dilate, and we breath more quickly. Conversely, when the vagal system is activated, these physiological responses are inhibited, leading to a calmer state. The vagus nerve, then, acts as a kind of "brake" on our arousal. One interesting consequence of this calmer state is that it tends to promote social interaction-when we are not tensed and afraid of our immediate environment we are instead receptive to interacting with others. Poor functioning of this regulatory mechanism, therefore, may be associated with difficulties in social behavior. One index of autonomic regulation is heart rate variability (HRV). HRV is a measure of how much the gap between one beat and the next varies over time. High HRV means there are continual fluctuations in the

 JoVE Behavior

Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents

1Neuroscience Center, University of Helsinki, 2Neurotar LTD, 3A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 4Laboratory Animal Center, University of Helsinki


JoVE 51869

 JoVE Neuroscience

A Behavioral Assay for Mechanosensation of MARCM-based Clones in Drosophila melanogaster

1Department of Biology, College of the Holy Cross, 2School of Medicine, Georgetown University, 3Department of Biochemistry, Giesel School of Medicine, Dartmouth College, 4School of Medicine, Tufts University, 5Transgenomic Inc., 6Department of Molecular, Cell and Cancer Biology, UMass Medical School


JoVE 53537

 Science Education: Essentials of Developmental Psychology

Children's Reliance on Artist Intentions When Identifying Pictures

JoVE Science Education

Source: Laboratories of Judith Danovitch and Nicholaus Noles—University of Louisville

Children are not the best artists. Sometimes it’s easy to pick out the characteristic triangular head, whiskers, and tail of a cat, but children often describe elaborate scenarios that they depict as a beautifully unrecognizable mess. Thus, given children’s questionable artistic talent, how do they know what their drawings, and the drawings of others, represent? One way children identify pictures is by relying on resemblance. If it looks like a cat, then it’s a cat. However, some pictures do not clearly resemble any real object. In this situation, children must use other means to figure out what the picture represents, including their understanding of what the person who created the picture intended it to represent. By their first birthday, children are sensitive to the intentions of other people. They know that people’s actions are driven by their goals, and they can infer a person’s intentions even if the goal-directed action is not successful (e.g., they understand a person struggling to turn a lid intends to open a jar, even if they never see them succeed in opening it). By about age 3, children can use this understanding of intention to guide their interpretation

 Science Education: Essentials of Developmental Psychology

Measuring Children's Trust in Testimony

JoVE Science Education

Source: Laboratories of Judith Danovitch and Nicholaus Noles—University of Louisville

How does a person learn about the world around them? One way is through direct observation and exploration. However, not every piece of information can be observed firsthand. Instead, a person must often rely on other people as information sources. This is particularly true for children who have so many questions about the world around them, yet have limited means of accessing the answers. Thus, children must rely on other people to provide answers to their questions. There is a popular viewpoint that children are gullible and that they believe everything they hear. However, recent research has shown this is not the case. Children as young as age 3 evaluate what other people say and show selective trust in other people’s testimony. Children pay attention to and use their knowledge about an individual’s prior behavior and characteristics to judge whether that individual is a trustworthy informational source.   This video demonstrates how to measure children’s trust in testimony based on methods developed by Birch, Vauthier, and Bloom1 and Koenig, Clement, and Harris.2 

 Science Education: Essentials of Developmental Psychology

Categories and Inductive Inferences

JoVE Science Education

Source: Laboratories of Nicholaus Noles and Judith Danovitch—University of Louisville

It might be possible for the human brain to keep track of each individual person, place, or thing encountered, but that would be a very inefficient use of time and cognitive resources. Instead, humans develop categories. Categories are mental representations of real things that can be used for a variety of purposes. For example, individuals can use the perceptual features of animals to place them into a given category. So, upon seeing a furry, four-legged, tail-wagging, barking animal, a person can determine that it is a dog. This is one of many examples where people use perceptual similarity to fit new experiences into their existing mental representations. However, category membership is much more than skin deep, especially for representations of animals. Frank Keil demonstrated this by using a simple, yet powerful technique that focused on the differences between natural kinds and artifacts. Natural kinds include animals and other living things, while artifacts consist largely of nonliving things, such as tables or gold bricks. In his study, Keil told children stories about natural kinds and artifacts that underwent transformations causing them to cross categorical boundaries. For example, he

 Science Education: Essentials of Sensation and Perception

Motion-induced Blindness

JoVE Science Education

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University

One thing becomes very salient after basic exposure to the science of visual perception and sensation: what people see is a creation of the brain. As a result people may fail to see things, see things that are not there, or see things in a distorted way.

To distinguish between physical reality and what people perceive, scientists use the term awareness to refer to what people perceive. To study awareness, vision scientists often rely on illusions-misperceptions that can reveal the ways that the brain constructs experience. In 2001, a group of researchers discovered a striking new illusion called motion-induced blindness that has become a powerful tool in the study of visual awareness.1 This video demonstrates typical stimuli and methods used to study awareness with motion-induced blindness.

Results below contain some, but not all of your search terms.
 JoVE Behavior

Vision Training Methods for Sports Concussion Mitigation and Management

1Neurology and Rehabilitative Medicine, University of Cincinnati, 2Division of Sports Medicine, Department of Orthopaedic Surgery, University of Cincinnati, 3Department of Athletics, University of Cincinnati, 4Department of Neurosurgery, University of Cincinnati, 5College of Education, Criminal Justice, and Human Services, University of Cincinnati, 6Division of Sports Medicine, Cincinnati Children's Hospital Medical Center


JoVE 52648

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Sensation and Perception

Crowding

JoVE Science Education

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University

Human vision depends on light-sensitive neurons that are arranged in the back of the eye on a tissue called the retina. The neurons, called the rods and cones because of their shapes, are not uniformly distributed on the retina. Instead, there is a region in the center of the retina called the macula where cones are densely packed, and especially so in a central sub-region of the macula called the fovea. Outside the fovea there are virtually no cones, and rod density decreases considerably with greater distance from the fovea. Figure 1 schematizes this arrangement. This kind of arrangement is also replicated in the visual cortex: Many more cells represent stimulation at the fovea compared to the periphery. Figure 1. Schematic depiction of the human eye and the distribution of light-sensitive receptor cells on the retina. The pupil is the opening in the front of the eye that allows light to enter. Light is then focused onto the retina, a neural tissue in the back of the eye that is made of rods and cones, light-sensitive cells. At the center of the retina is the macula, and in

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Medicine

The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool

1Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic Foundation, 2Center for Brain Health, Cleveland Clinic Foundation, 3Quantitative Health Sciences, Cleveland Clinic Foundation, 4Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation


JoVE 51318

Results below contain some, but not all of your search terms.
 Science Education: Essentials of Physical Examinations II

Eye Exam

JoVE Science Education

Source: Richard Glickman-Simon, MD, Assistant Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine, MA

Proper evaluation of the eyes in a general practice setting involves vision testing, orbit inspection, and ophthalmoscopic examination. Before beginning the exam, it is crucial to be familiar with the anatomy and physiology of the eye. The upper eyelid should be slightly over the iris, but it shouldn't cover the pupil when open; the lower lid lies below the iris. The sclera normally appears white or slightly buff in color. The appearance of conjunctiva, a transparent membrane covering the anterior sclera and the inner eyelids, is a sensitive indicator of ocular disorders, such as infections and inflammation. The tear-producing lacrimal gland lies above and lateral to the eyeball. Tears spread down and across the eye to drain medially into two lacrimal puncta before passing into the lacrimal sac and nasolacrimal duct to the nose. The iris divides the anterior from the posterior chamber. Muscles of the iris control the size of the pupil, and muscles of the ciliary body behind it control the focal length of the lens. The ciliary body also produces aqueous humor, which largely determines intraocular pressure (Figure 1). Cranial nerve

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
12345678913
More Results...
Waiting
simple hit counter