Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Transformation, Bacterial: The heritable modification of the properties of a competent bacterium by naked DNA from another source. The uptake of naked DNA is a naturally occuring phenomenon in some bacteria. It is often used as a Gene transfer technique.
 Science Education: Basic Methods in Cellular and Molecular Biology

Bacterial Transformation: The Heat Shock Method

JoVE Science Education

Transformation is the process that occurs when a cell ingests foreign DNA from its surroundings. Transformation can occur in nature in certain types of bacteria. In molecular biology, transformation is artificially reproduced in the lab via the creation of pores in bacterial cell membranes. Bacterial cells that are able to take up DNA from the environment are called competent cells. In the laboratory, bacterial cells can be made competent and DNA subsequently introduced by a procedure called the heat shock method. Heat shock transformation uses a calcium rich environment provided by calcium chloride to counteract the electrostatic repulsion between the plasmid DNA and bacterial cellular membrane. A sudden increase in temperature creates pores in the plasma membrane of the bacteria and allows for plasmid DNA to enter the bacterial cell. This video goes through a step-by-step procedure on how to create chemically competent bacteria, perform heat shock transformation, plate the transformed bacteria, and calculate transformation efficiency.

 Science Education: Basic Methods in Cellular and Molecular Biology

Bacterial Transformation: Electroporation

JoVE Science Education

The term “transformation” refers cellular ingestion of foreign DNA. In nature, transformation can occur in certain types of bacteria. In molecular biology, however, transformation is artificially induced through the creation of pores in the bacterial cell walls. Bacterial cells that are able to take up DNA from the environment are called competent cells. Electrocompetent cells can be produced in the laboratory and transformation of these cells can be achieve via the application of an electrical field that creates pores in the cell wall through which DNA can pass. The video explains the equipment used in electroporation such as an electroporator and electroporation cuvette. The video also goes through a step-by-step procedure about how to create electrocompetent cells and electroporate cells of interest. Prediction of the success of a transformation of an experiment, by observing the time constant, as well as the importance of removing salt from the solutions when electroporating, are also mentioned.

 JoVE Genetics

The Use of Induced Somatic Sector Analysis (ISSA) for Studying Genes and Promoters Involved in Wood Formation and Secondary Stem Development

1School of Ecosystem and Forest Sciences, Faculty of Science, The University of Melbourne, 2Victorian AgriBiosciences Centre, La Trobe University R&D Park, 3College of Biological Sciences, Department of Plant Biology, University of California, Davis, 4Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria


JoVE 54553

 JoVE Immunology and Infection

Monitoring Changes in Membrane Polarity, Membrane Integrity, and Intracellular Ion Concentrations in Streptococcus pneumoniae Using Fluorescent Dyes

1Department of Microbiology and Immunology, University at Buffalo, State University of New York, 2Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York, 3New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York


JoVE 51008

 JoVE Genetics

Genetic Manipulation of the Plant Pathogen Ustilago maydis to Study Fungal Biology and Plant Microbe Interactions

1Institute for Microbiology, Heinrich-Heine University Düsseldorf, 2Bioeconomy Science Center (BioSC), 3Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology, 4Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich-Heine University Düsseldorf


JoVE 54522

12345678930
More Results...
Waiting
simple hit counter