Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Volatile Organic Compounds: Organic compounds that have a relatively high Vapor pressure at room temperature.
 JoVE Environment

Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor

1Bioprocesses Department, Laboratory of Environmental Biotechnology, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, 2Laboratory of Molecular Biology, Escuela Superior de Medicina, Instituto Politécnico Nacional


JoVE 52956

 Science Education: Essentials of Organic Chemistry

Preparing Anhydrous Reagents and Equipment

JoVE Science Education

Source: Laboratory of Dr. Dana Lashley - College of William and Mary
Demonstrated by: Timothy Beck and Lucas Arney

Many reactions in organic chemistry are moisture-sensitive and must be carried out under careful exclusion of water. In these cases the reagents have a high affinity to react with water from the atmosphere and if left exposed the desired reaction will not take place or give poor yields, because the reactants are chemically altered. In order to prevent undesired reactions with H2O these reactions have to be carried out under an inert atmosphere. An inert atmosphere is generated by running the reaction under nitrogen gas, or in more sensitive cases, under a noble gas such as argon. Every component in such a reaction must be completely anhydrous, or free of water. This includes all reagents and solvents used as well as all glassware and equipment that will come into contact with the reagents. Extremely water-sensitive reactions must be carried out inside of a glovebox which provides a completely sealed off anhydrous environment to work under via a pair of gloves which protrudes out to one of the sides of the chamber.

 Science Education: Essentials of Organic Chemistry

Schlenk Lines Transfer of Solvents

JoVE Science Education

Source: Laboratory of Dr. Ian Tonks — University of Minnesota Twin Cities

Schlenk lines and high vacuum lines are both used to exclude moisture and oxygen from reactions by running reactions under a slight overpressure of inert gas (usually N2 or Ar) or under vacuum. Vacuum transfer has been developed as a method separate solvents (other volatile reagents) from drying agents (or other nonvolatile agents) and dispense them to reaction or storage vessels while maintaining an air-free environment. Similar to thermal distillations, vacuum transfer separates solvents by vaporizing and condensing them in another receiving vessel; however, vacuum transfers utilize the low pressure in the manifolds of Schlenk and high vacuum lines to lower boiling points to room temperature or below, allowing for cryogenic distillations. This technique can provide a safer alternative to thermal distillation for the collection of air- and moisture-free solvents. After the vacuum transfer, the water content of the collected solvent can be tested quantitatively by Karl Fischer titration, qualitatively by titration with a Na/Ph2CO solution, or by 1H NMR spectroscopy.

 Science Education: Essentials of Environmental Science

Determination Of NOx in Automobile Exhaust Using UV-VIS Spectroscopy

JoVE Science Education

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

In the troposphere, ozone is naturally formed when sunlight splits nitrogen dioxide (NO2):

NO2 + sunlight → NO + O

O + O2 O3 Ozone (O3) can go on to react with nitric oxide (NO) to form nitrogen dioxide (NO2) and oxygen: NO + O3 → NO2 + O2 This results in no net gain of ozone (O3). However, with the anthropogenic production of ozone forming precursors (NO, NO2, and volatile organic compounds) through the combustion of fossil fuels, elevated levels of ozone in the troposphere have been found. Motor vehicle exhaust is a significant source of these ozone forming precursors: NO, NO2, and volatile organic compounds (VOCs). For example, mobile sources make up nearly 60% of NO + NO2 emissions. At the high temperatures found in a car’s combustion chamber, nitrogen and oxygen from the air react to form nitric oxide (NO) and nitrogen dioxide (NO2):

 Science Education: Essentials of General Chemistry

Freezing-Point Depression to Determine an Unknown Compound

JoVE Science Education

Source: Laboratory of Lynne O' Connell — Boston College

When a solid compound is dissolved in a solvent, the freezing point of the resulting solution is lower than that of the pure solvent. This phenomenon is known as freezing-point depression, and the change in temperature is directly related to the molecular weight of the solute. This experiment is designed to find the identity of an unknown compound by using the phenomenon of freezing-point depression to determine its molecular weight. The compound will be dissolved in cyclohexane, and the freezing point of this solution, as well as that of pure cyclohexane, will be measured. The difference between these two temperatures allows for the calculation of the molecular weight of the unknown substance.

 Science Education: Essentials of Organic Chemistry

Performing 1D Thin Layer Chromatography

JoVE Science Education

Source: Laboratory of Dr. Yuri Bolshan — University of Ontario Institute of Technology

Thin layer chromatography (TLC) is a chromatographic method used to separate mixtures of non-volatile compounds. A TLC plate consists of a thin layer of adsorbent material (the stationary phase) fixed to an appropriate solid support such as plastic, aluminum, or glass1. The sample(s) and reference compound(s) are dissolved in an appropriate solvent and applied near the bottom edge of the TLC plate in small spots. The TLC plate is developed by immersing the bottom edge in the developing solvent consisting of an appropriate mobile phase. Capillary action allows the mobile phase to move up the adsorbent layer. As the solvent moves up the TLC plate, it carries with it the components of each spot and separates them based on their physical interactions with the mobile and stationary phases.

 Science Education: Essentials of Organic Chemistry

Fractional Distillation

JoVE Science Education

Source: Laboratory of Dr. Nicolas Leadbeater — University of Connecticut 

Distillation is perhaps the most common laboratory technique employed by chemists for the purification of organic liquids. Compounds in a mixture with different boiling points separate into individual components when the mixture is carefully distilled. The two main types of distillation are "simple distillation" and "fractional distillation", and both are widely used in organic chemistry laboratories. Simple distillation is used when the liquid is (a) relatively pure (containing no more than 10% liquid contaminants), (b) has a non-volatile component, such as a solid contaminant, or (c) is mixed with another liquid with a boiling point that differs by at least 25 °C. Fractional distillation is used when separating mixtures of liquids whose boiling points are more similar (separated by less than 25 °C). This video will detail the fractional distillation of a mixture of two common organic solvents, cyclohexane and toluene.

 Science Education: Essentials of Analytical Chemistry

High-Performance Liquid Chromatography (HPLC)

JoVE Science Education

Source: Dr. Paul Bower - Purdue University

High-performance liquid chromatography (HPLC) is an important analytical method commonly used to separate and quantify components of liquid samples. In this technique, a solution (first phase) is pumped through a column that contains a packing of small porous particles with a second phase bound to the surface. The different solubilities of the sample components in the two phases cause the components to move through the column with different average velocities, thus creating a separation of these components. The pumped solution is called the mobile phase, while the phase in the column is called the stationary phase. There are several modes of liquid chromatography, depending upon the type of stationary and/or mobile phase employed. This experiment uses reversed-phase chromatography, where the stationary phase is non-polar, and the mobile phase is polar. The stationary phase to be employed is C18 hydrocarbon groups bonded to 3-µm silica particles, while the mobile phase is an aqueous buffer with a polar organic modifier (acetonitrile) added to vary its eluting strength. In this form, the silica can be used for samples that are water-soluble, providing a broad range of applications. In this experiment, the mixtures of three components frequently found

 Science Education: Essentials of Analytical Chemistry

Gas Chromatography (GC) with Flame-Ionization Detection

JoVE Science Education

Source: Laboratory of Dr. B. Jill Venton - University of Virginia

Gas chromatography (GC) is used to separate and detect small molecular weight compounds in the gas phase. The sample is either a gas or a liquid that is vaporized in the injection port. Typically, the compounds analyzed are less than 1,000 Da, because it is difficult to vaporize larger compounds. GC is popular for environmental monitoring and industrial applications because it is very reliable and can be run nearly continuously. GC is typically used in applications where small, volatile molecules are detected and with non-aqueous solutions. Liquid chromatography is more popular for measurements in aqueous samples and can be used to study larger molecules, because the molecules do not need to vaporize. GC is favored for nonpolar molecules while LC is more common for separating polar analytes. The mobile phase for gas chromatography is a carrier gas, typically helium because of its low molecular weight and being chemically inert. Pressure is applied and the mobile phase moves the analyte through the column. The separation is accomplished using a column coated with a stationary phase. Open tubular capillary columns are the most popular columns and have the stationary phase coated on the walls of the capillary. Stationary phases a

 Science Education: Essentials of Earth Science

Sonication Extraction of Lipid Biomarkers from Sediment

JoVE Science Education

Source: Laboratory of Jeff Salacup - University of Massachusetts Amherst

The material comprising the living "organic" share of any ecosystem (leaves, fungi, bark, tissue; Figure 1) differs fundamentally from the material of the non-living "inorganic" share (rocks and their constituent minerals, oxygen, water, metals). Organic material contains carbon linked to a series of other carbon and hydrogen molecules (Figure 2), which distinguishes it from inorganic material. Carbon's wide valency range (-4 to +4) allows it to form up to four separate covalent bonds with neighboring atoms, usually C, H, O, N, S, and P. It can also share up to three covalent bonds with a single other atom, such as the triple bond in the often-poisonous cyanide, or nitrile, group. Over the past 4.6 billion years, this flexibility has led to an amazing array of chemical structures, which vary in size, complexity, polarity, shape, and function. The scientific field of organic geochemistry is concerned with the identification and characterization of the whole range of detectable organic compounds, called biomarkers, produced by life on this planet, as we

 Science Education: Essentials of Organic Chemistry

Conducting Reactions Below Room Temperature

JoVE Science Education

Source: Laboratory of Dr. Dana Lashley - College of William and Mary

Demonstration by: Matt Smith

When new bonds are formed in the course of a chemical reaction, it requires that the involved species (atoms or molecules) come in very close proximity and collide into one another. The collisions between these species are more frequent and effective the higher the speed at which these molecules are moving. A widely used rule of thumb, which has its roots in the Arrhenius equation1, states that raising the temperature by 10 K will approximately double the rate of a reaction, and raising the temperature by 20 K will quadruple the rate: (1) Equation (1) is often found in its logarithmic form: (2) where k is the rate of the chemical reaction, A is the frequency factor (relating to frequency of molecular collisions), Ea is the activation energy required for the reaction, R is the ideal gas constant, and T is the temperature at which the r

 Science Education: Essentials of Environmental Science

Measuring Tropospheric Ozone

JoVE Science Education

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

Ozone is a form of elemental oxygen (O3), a molecule of three oxygen atoms bonded in a structure that is highly reactive as an oxidizing agent. Ozone occurs in both the stratosphere and the troposphere levels of the atmosphere. When in the stratosphere (located approximately 10-50 km from the earth’s surface), ozone molecules form to the ozone layer and help prevent harmful UV rays from reaching Earth’s surface. In lower altitudes of the troposphere (surface - approximately 17 km), ozone is harmful to human health and is considered an air pollutant contributing to photochemical smog (Figure 1). Ozone molecules can cause damage directly by harming respiratory tissue when inhaled or indirectly by harming plant tissues (Figure 2) and softer materials including tires on automobiles. Outdoor tropospheric ozone is formed at ground level when nitrogen oxides (NOx) and volatile organic compounds (VOCs) from automobile emissions are exposed to sunlight. Consequently, health concerns over ozone concentrations escalate in sunny conditions or when and where automobile use is increased. Reaction: NO2 + VOC + sunlight &

 JoVE Chemistry

Seeded Synthesis of CdSe/CdS Rod and Tetrapod Nanocrystals

1Department of Chemical Engineering, UC Berkeley, 2Department of Materials Science and Engineering, UC Berkeley, 3Department of Chemistry, UC Berkeley, 4Materials Sciences Division, Lawrence Berkeley National Laboratory, 5Department of Chemistry, University of Chicago, 6Center for Nanoscale Materials, Argonne National Laboratory


JoVE 50731

 Science Education: Essentials of Organic Chemistry

Rotary Evaporation to Remove Solvent

JoVE Science Education

Source: Dr. Melanie Pribisko Yen and Grace Tang — California Institute of Technology

Rotary evaporation is a technique most commonly used in organic chemistry to remove a solvent from a higher-boiling point compound of interest. The rotary evaporator, or "rotovap", was invented in 1950 by the chemist Lyman C. Craig. The primary use of a rotovap is to dry and purify samples for downstream applications. Its speed and ability to handle large volumes of solvent make rotary evaporation a preferred method of solvent removal in many laboratories, especially in instances involving low boiling point solvents.

 Science Education: Essentials of Organic Chemistry

Assembly of a Reflux System for Heated Chemical Reactions

JoVE Science Education

Source: Laboratory of Dr. Philip Miller — Imperial College London

Many chemical experiments require elevated temperatures before any reaction is observed, however heating solutions of reactants can lead to loss of reactants and/or solvent via evaporation if their boiling points are sufficiently low. In order to ensure no loss of reactants or solvent, a reflux system is used in order to condense any vapors produced on heating and return these condensates to the reaction vessel. 

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Chemistry

Conducting Miller-Urey Experiments

1School of Chemistry and Biochemistry, Georgia Institute of Technology, 2Earth-Life Science Institute, Tokyo Institute of Technology, 3Institute for Advanced Study, 4Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, 5Goddard Center for Astrobiology, NASA Goddard Space Flight Center, 6Geosciences Research Division, Scripps Institution of Oceanography, University of California at San Diego


JoVE 51039

12345678926
More Results...
Waiting
simple hit counter