JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

JoVE Science Education Basic Methods in Cellular and Molecular Biology Restriction Enzyme Digests

Restriction Enzyme Digests

You must be subscribed to JoVE to access this content.

Recommend JoVE to Your Librarian

Current Access Through Your IP Address

You do not have access to any JoVE content through your current IP address.

IP: 50.16.75.46, User IP: 50.16.75.46, User IP Hex: 839928622

Current Access Through Your Registered Email Address

You aren't signed into JoVE. If your institution subscribes to JoVE, please or create an account with your institutional email address to access this content.

 

A subscription to JoVE is required to view this article.
You will only be able to see the first 20 seconds.

Restriction enzymes, or restriction endonucleases, are used in a variety of different applications in molecular biology. These enzymes recognize and cleave a specific DNA sequence, called a restriction site. The video you are about to watch provides some background information on these miraculous molecules and shows how to set up a restriction enzyme digest.

Where do restriction enzymes come from anyway? These enzymes happen to be an adaptation of bacteria that act as a defense mechanism against viruses known as bacteriophages. Thanks to the addition of methyl groups to restriction enzymes sites on bacterial DNA, restriction enzymes only recognize and cut the phage DNA, thereby preventing infection.

Restriction enzymes have some pretty weird names. For instance, HindIII, NotI, EcoRI and BamHI. The first three letters of a restriction enzyme name refers to the organism from which it was isolated. For example, the restriction enzyme EcoRI was isolated from E. coli. The fourth letter, if necessary, refers to the bacterial strain from which the enzyme was isolated. The roman numeral indicates whether it is the first, second, third, enzyme isolated from that particular organism.

Restriction enzymes recognize a sequence of nucleotides, usually four to eight base pairs long, called a recognition site. At specific nucleotides within the sequence, the enzyme will break the phosphodiester bonds in the DNA backbone. The recognition sites are usually palindromic, meaning that the sequence reads the same forwards and backwards. When the palindrome is found on complementary strands of DNA molecule it is called an inverted-repeat palindrome.

Restriction enzymes can leave different types of ends once the DNA is cleaved: sticky ends and blunt ends. Sticky ends leave 3’ and 5’ overhangs while blunt ends leave no overhangs. The type of end dictates how the DNA fragment isolated by the restriction enzyme digest will be recombined with other DNA fragments in a process known as ligation.

A restriction enzyme digest should be carefully planned. A digestion reaction typically consists of the following: deionized water, the DNA that’s going to be cut, buffer specific to the enzyme you will use, and sometimes a protein called bovine serum albumin or BSA. BSA will stabilize the reaction by preventing enzyme from sticking to the side of the container that houses the digest. Each restriction enzyme can potentially have different buffer conditions, incubation temperatures, and requirements for BSA. Suppliers of restriction enzymes will have resources that one can check to obtain all of the necessary information.

To begin setting up the digest, retrieve the restriction enzyme from the freezer or fridge. Keep the restriction enzyme on ice or a thermal resistant container to make sure there is optimal activity for future reactions. To a microfuge tube reaction components should be added in the following order. First, a volume of sterile, nuclease-free water that will yield a final reaction volume of 20μL. Then 10x Restriction Enzyme Buffer, then BSA if needed, up to 1μg of DNA, and 2-10 units of enzyme. Units are defined as the amount of enzyme required to produce a complete digest of 1μg of control DNA in 60 minutes at 37°C in a 50μL reaction volume. After, mix by vortexing and then centrifuge briefly at 12,000xg in a microcentrifuge to collect the contents at the bottom of the tube. Then incubate at an optimal temperature for your restriction enzyme, usually 37°C in a heating block for 1 to 4 hours.

Once your digest has completed, it’s a good idea to incubate the reaction mixture at 65˚C to heat inactivate the restriction enzymes. While restriction enzymes cut site-specifically most of the time, prolonged incubation times can lead to star activity, which is cutting at sites that are similar, but distinct from their typical digestion sites.

Following inactivation, the DNA should be run on an agarose gel to ensure that the digest was successful.

Here are a couple of helpful hints for running your digests and ensuring success.

Sometimes you may find yourself in a situation where multiple enzymes need to be used to generate a specific DNA fragment. In this case you need to check that buffer conditions and incubation temperatures are compatible between the two enzymes, if so, then you can perform a double digest and have both enzymes cut in the same reaction. Sometimes, however, you’ll find incompatibility in the reaction conditions between the two enzymes, and in this case the workaround is to use the enzymes sequentially. For example, the digest can be performed with one enzyme first, and then the buffer composition, can be altered in order to be optimal for the second enzyme. Another way to overcome buffer incompatibility and perform a sequential digest is to purify the DNA following the initial digest and then perform the second digest.

Using controls are a good way to understand why a digest might go wrong. For example, a no enzyme control will allow you to check the integrity of DNA sample and determine if exonuclease activity is present. The use of control DNA with known restriction sites allows the activity of the enzyme to be tested.

Now that we have seen how digests are carried out, lets have a look at various ways restriction enzymes can be used.

Restriction enzymes can be used diagnostically, in order to identify particular samples. By loading a digest into a specialized chip and then placing that chip into a machine called a bioanalyzer. Researchers can examine DNA fragment sizes, produced by the digest, in order to determine the authenticity of fish samples. The different banding patterns of the same gene from a given species, or in this case different species, are called restriction fragment length polymorphisms.

Restriction enzymes can also be used in subcloning to isolate a fragment of DNA from one plasmid and insert into another, so the desired fragment can be replicated using bacteria.

By employing the polymerase chain reaction, or PCR to introduce restriction sites into genes at very specific locations, restriction enzymes can be used to determine the presence of single nucleotide differences in alternate forms of the same gene, or allele. These single nucleotide polymorphisms, or SNPs, are difficult to detect with PCR and gel electrophoresis alone. With the introduction of the restriction site within the SNP, a simple digest can distinguish between the alleles.

You’ve just watched JoVE’s video on restriction enzymes. You’ve learned where these enzymes come from, been taught some basics about how they work, seen how to set up a digest, and learned how restriction enzymes can be used in molecular biology. As always, thanks for watching!

Summary

Restriction enzymes or endonucleases recognize and cut DNA at a specific sequence. These enzymes occur naturally in bacteria as a defense against bacteriophages - viruses that infect bacteria. Bacterial restriction enzymes cut the invading bacteriophage DNA while leaving the bacterial genomic DNA unharmed due to addition of methyl groups.

This video explains the basic principles of restriction enzymes including: how restriction enzymes are named and the types of recognition sites and overhangs that exist. Also provided is a step-by-step generalized procedure for how to set up a restriction digest including the necessary components, the order in which the mixture should be assembled, and the typical incubation temperature and time. The importance of inactivating restriction enzymes to prevent star activity is mentioned. Tips for performing multiple enzymes digests and using controls in digestion reactions are also provided.

Cite this Video

JoVE Science Education Database. Basic Methods in Cellular and Molecular Biology. Restriction Enzyme Digests. JoVE, Cambridge, MA, doi: 10.3791/5070 (2014).

Applications

 JoVE Biology

DNA-based Fish Species Identification Protocol


JoVE 1871 4/28/2010

1Agilent Technologies

Restriction enzymes can be used as a diagnostic tool, in order to identify certain samples. By loading digested DNA into a specialized chip and then placing that chip into a bioanalyzer, researchers can examine DNA fragment sizes produced by the digest. This information can be used to determine the authenticity of fish samples in the seafood industry.

 JoVE Immunology and Infection

A Simple Chelex Protocol for DNA Extraction from Anopheles spp.


JoVE 3281 1/09/2013

1Malaria Institute at Macha, 2Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health

Restriction enzymes are used to genotype Plasmodium falciparum, the parasite that causes malaria, which has been isolated from different species of mosquitoes. This article uses restriction enzymes to detect drug resistance-associated polymorphisms (variations in gene sequences) in malarial parasites.

 JoVE Biology

Associated Chromosome Trap for Identifying Long-range DNA Interactions


JoVE 2621 4/23/2011

1Medical Service, VA Palo Alto Health Care System , Stanford University School of Medicine

In this video restriction enzymes that are insensitive to CpG methylation, which occurs where cytosine is next to guanine, are used in two different steps of the procedure. Long-range DNA interactions are indentified through an Associated Chromosome Trap (ACT) assay. Through the ACT assay DNA associations can be determined by the extension and modification of chromosome conformation capture technique with the aid of restriction enzymes.

 JoVE Biology

DNA Methylation: Bisulphite Modification and Analysis


JoVE 3170 10/21/2011

1Epigenetics Group, Cancer Research Program, Garvan Institute of Medical Research, 2St Vincent's Clinical School, University of NSW

The technique described in this video determines the extent of methylation in DNA samples down to the single nucleotide resolution. Specialized restriction enzymes are used to digest methylated DNA after the conversion cytosines to uracils with bisulfite. The procedure shows the amount of DNA methylation in a sample, which can represent potential transcriptional activity.

 JoVE Biology

Mutagenesis and Functional Selection Protocols for Directed Evolution of Proteins in E. coli


JoVE 2505 3/16/2011

1Department of Microbiology & Environmental Toxicology, University of California Santa Cruz - UCSC

A bacterial strain that uses an error prone polymerase can generate a mutant library. Mutant DNA is linearized with a restriction enzyme and then sequenced. Bacteria transformed with mutant genes can then be tested with different drug or chemicals to see which bacterial colonies have evolved to have drug resistance.


Waiting
simple hit counter