Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biology

השימוש בChemostats בביולוגיה מיקרוביאלית מערכות

Published: October 14, 2013 doi: 10.3791/50168

Summary

שיעור צמיחת תאים הוא תהליך מוסדר וקובע עיקרי של פיזיולוגיה של תא. culturing הרציף באמצעות chemostats מאפשר שליטה חיצונית של שיעור צמיחת תאים על ידי הגבלה תזונתית להקל על הלימוד של רשתות מולקולריות השולטות צמיחת תאים וכיצד רשתות אלה להתפתח כדי לייעל את צמיחת תאים.

Abstract

תאים לווסת את קצב צמיחה שלהם בתגובה לאותות מהעולם החיצוני. כתא גדל, תהליכים תאיים שונים חייבים להיות מתואמים ביניהם סינתזת macromolecular, חילוף חומרים וסופו של דבר, מחויבת למחזור חלוקת תא. Chemostat, שיטה של ​​ניסוי שליטה שיעור צמיחת תאים, מספקת אמצעי רב עוצמה של שיטתי לומד כיצד תהליכים תאיים משפיע שיעור צמיחה - הכוללים ביטוי גנים וחילוף חומרים - ורשתות רגולטורים ששולטות בקצב גדילת תאים. כאשר נשמר במשך מאות דורות chemostats יכול לשמש כדי לחקור אבולוציה אדפטיבית של חיידקים בתנאים סביבתיים המגבילים את צמיחת תאים. אנו מתארים את העיקרון של תרבויות chemostat, להדגים את פעולתם ולספק דוגמאות של היישומים השונים שלהם. לאחר תקופה של חוסר שימוש לאחר כניסתה שלהם באמצע המאה העשרים, ההתכנסות של מתודולוגיות הגנום בקנה מידה עם מחודשת בterest בויסות גדילת תאים ואת הבסיס המולקולרי של אבולוציה אדפטיבית הוא מגרה רנסנס בשימוש בchemostats במחקר ביולוגי.

Introduction

הצמיחה של תאים מווסתות על ידי רשתות מורכבות של האינטראקציה 1,2 גורמים גנטיים וסביבתיים. הרגולציה multifactorial של צמיחת תאים מחייבת גישה ברמת מערכת למחקר שלה. עם זאת, המחקר הקפדני של צמיחת תאים מוסדרת הוא קרא תיגר על ידי הקושי בניסוי שליטה על הקצב שבו תאים לגדול. יתר על כן, אפילו בניסויים הפשוטים תנאים תאיים הם לעתים קרובות דינמיים ומורכבים כמו תאים ברציפות לשנות את הסביבה שלהם כמו שהם מתרבים. פתרון לבעיות אלו מסופק על ידי chemostat: שיטה של ​​culturing תאים המאפשרת שליטת ניסיוני של שיעורי צמיחת תאים בסביבות מוגדרות, בלתי משתנה ומבוקרות.

השיטה של תרבית רציפה באמצעות chemostat תוארה באופן עצמאי על ידי מונה 3 ונוביק & 4 סילארד ב1950. כמו נולד במקור, תאים גדלים בנפח קבוע של תקשורת שהוא קוןדילול tinually על ידי תוספת של מדיה חדשה וההסרה בו זמנית של אמצעי תקשורת ותאים ישנים (איור 1). משוואות דיפרנציאליות רגילות יחד (איור 2) מתארות את שיעור השינוי בתא צפיפות (x) ואת הריכוז של חומר מזין הגבלת צמיחה (ים) בכלי chemostat. חשוב מכך, מערכת זו של משוואות צופה בודד (שאינו אפס) יציב מצב יציב (איור 3) עם המשמעות יוצאת דופן, כי במצב יציב, קצב הגידול הספציפי של התאים (כלומר קבוע שיעור צמיחה מעריכית) שווה לשיעור שבתרבות בדילול מלא (ד '). על ידי שינוי שיעור דילול זה אפשרי להקים אוכלוסיות מצב יציב של תאים על שיעורי צמיחה שונים ובתנאים שונים של הגבלה תזונתית.

השליטה הניסיונית של שיעור צמיחה באמצעות chemostats הייתה קריטית להתפתחות של הבנה של אופן ששינויים בפיזיולוגיה של תאיםעם שיעורים של 5,6 צמיחה. עם זאת, עמוד התווך לשעבר זה של שיטות מיקרוביולוגיות הפך מעורפל יותר ויותר במהלך הפיצוץ במחקר בביולוגיה מולקולרית בשלהיי המאה העשרים. כיום, עניין מחודש בצמיחת שליטה בשני חיידקים ויצורים רב תאיים וכניסתו של שיטות הגנום בקנה מידה לניתוח ברמת מערכות חידש מוטיבציה לשימוש בchemostats. כאן, אנו מתארים שלושה יישומים שמנצלים את השליטה המדויקת של שיעורי צמיחת תא והסביבה החיצונית, כי הם ייחודי אפשריים באמצעות chemostats. ראשית, אנו מתארים את השימוש של chemostats לחקור כיצד השפע של אלפי ביומולקולות - כגון תמלילים ומטבוליטים - מוסדרים מתואם עם קצב צמיחה. שנית, אנו מתארים כיצד ניתן להשתמש chemostats לקבל אומדנים מדויקים של הבדלי צמיחה בשיעור שבין גנוטיפים שונים בסביבות מוגבלות תזונתיים באמצעות ניסויי תחרות. שלישית, אנו מתארים כיצד chemostats יכוללשמש כדי לחקור אבולוציה אדפטיבית של תאים גדל בסביבות תזונתיות ירודה קבועים. דוגמאות אלה ממחישים את הדרכים שבהן chemostats מאפשרות לחקירות ברמת מערכות של רגולציה צמיחת תאים, גן על ידי אינטראקציות סביבה והתפתחות אדפטיבית.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

עיקרון culturing הרציף באמצעות chemostat יכול להתממש במגוון רחב של יישומים. בכל chemostats זה חיוני שיהיה לי 1) שיטות לשמירה על סטריליות של כל הרכיבים, 2) תרבות מעורבת היטב, 3) אוורור מתאים של כלי התרבות ו4) אמצעי אמין של תקשורת ובנוסף הסרת התרבות. כאן, אנו מתארים את השימוש של bioreactor Sixfors (INFORS Inc) כchemostat תוך שימוש בשיטות שניתן להתאים בקלות להגדרות חלופיות.

1. להרכבת כלי שייט Chemostat

  1. הפעל את Sixfors באמצעות המתג הראשי.
  2. לשטוף ביסודיות את כלי chemostat, הרכבה בוחש, וצינורות מחוברים עם מים deionized (DI). בדוק את כל צינורות וO-טבעות ולהחליף את כל חלקים שחוקים מחפש.
  3. ודא שבסיס תמיכת פיר הכונן פונה כלפי מעלה בכלי הזכוכית, ושחלקו העליון של פיר הכונן היא התפרצה לדיור שלה בהרכבת הבוחש. הגדר את stirreההרכבה r לתוך כלי הזכוכית להבטיח את החלק התחתון של פיר הכונן יושבת בתמיכת פיר כונן. השתמש במהדק כדי לחזק את מערך stirrer לכלי הזכוכית.
  4. למלא את הכלי עם כ 300 מיליליטר של מים די.
  5. הסר את הפקקים מחמצן מומס (DO 2) בדיקה ובדוק את מפלס האלקטרוליט ידי שחרור המעטפת התחתונה ולוודא כי המעטפת התחתונה מלאה באמצע הדרך עם תמיסת אלקטרוליט. Rescrew המעטפת התחתונה ולהכניס לתוך הנמל בספינת chemostat. בורג עד הדוק אצבע.
  6. קח את הבדיקה ה-pH ולהסיר אותו מהמאגר שלה אחסון (3 M KCl). הסר את מכסה הבדיקה ה-pH ולצרף fermentor 1. שימוש במסך שליטת Sixfors, לנווט לתפריט פרמטר fermentor ובחר באפשרות "לכייל pH". מניחים את חללית ה-pH לחיץ pH 7 סטנדרטי ושיא קריאה כגבוה קראו. חזור על פעולה עם ה-pH 4 חיץ ושיא קריאה כנמוך קראו. לנתק את הבדיקה ה-pH מfermentor, לשטוף עם מים די והכנס את int הבדיקהo היציאה בכלי chemostat. בורג עד הדוק אצבע.
  7. מניחים את כלי chemostat במעמד. הערה על הספינה שfermentor (1-6) הבדיקה ה-pH הייתה קשורה ולמכוילת. מניחים את כובע הבדיקה pH בבדיקת ה-pH. חוזקה באמצעות נייר כסף לכסות את החלק העליון של החללית לעשות 2.
  8. מקפלים נייר כסף מעל הקצוות של צינורות מחוברים לכלי שיט chemostat.
  9. חזור על שלבים 1.2-1.8 לכל כלי.
  10. לעקר את כלי על ידי המעוקר ל15 דקות על מחזור נוזלי.

2. הכנת מדיה

  1. להקים את מגוון הגבלה של ריכוזים לתזונתיים על ידי גידול תרביות אצווה בריכוזי חומרי הזנה שונים. מזין הוא הגבלה בטווח שבו צפיפות התא הסופית היא פונקציה לינארית של ריכוז החומר המזין הראשוני (איור 4). בחר ריכוז תזונתי גם בתוך הטווח המגביל. דוגמאות להרכב תקשורת סטנדרטית ללימודים עם Saccharomycecerevisiae של זמין ב7-11.
  2. החיטוי בקבוק ריק שהוא הכתיר עם תקע גומי המכיל כניסת אוויר וכלי תקשורת לאחר שווידאת הראשונה כי בסופו של צינור התקשורת מכוסה בנייר כסף.
  3. בכלי נפרד להכין 10 L של מדיה.
  4. צרף כוס מסנן 500 מיליליטר לבקבוק 100 תקשורת מיליליטר. הסר את מסנן הכותנה עם מלקחיים המעוקרים באתנול ומייד לצרף את נמל הסינון על בקבוק התקשורת.
  5. צרף את בקבוק התקשורת למקור ואקום ומסנן לעקר תקשורת ידי הוספתו לכוס המסנן.
  6. כאשר הסינון של תקשורת הוא מוחלט, לסגור את נמל הסינון עם מהדק מתכת.

3. כיול לעשות 2 בדיקות והגדרת Chemostat

  1. לאחר כלי chemostat כבר autoclaved ואפשרו להתקרר מקום הכלי במעיל החום המתאים לו. חבר את הבדיקה הטמפרטורה, הבדיקה ה-pH, ולעשות 2 חללית. בואוכלי לשבת עם העצמה בלפחות 6 שעות כדי לאפשר 2 בדיקות לעשות כדי לקטב.
  2. מניחים את הקצה של כל צינור שפכים לקיבול איסוף נפרד. חבר את אספקת האוויר באמצעות מסנן autoclaved ולהפעיל את זרימת אוויר. המים בכל כלי צריכים לזרום החוצה מצינורות השפכים, אשר מציין כי כל החותמות נוצרות כראוי.
  3. התאם את גובה צינור השפכים בהתאם להיקף העבודה הרצוי (למשל 300 מיליליטר). אנו משתמשים בסרגל שמסומן עם מיקומי צינור מכוילים לנפחי עבודה שונים.
  4. חבר את בקבוק המדיה לכלי שיט chemostat. השימוש באתנול כדי לשמור על הצינור מסתיים סטרילי ככל האפשר. השחל את צינור המשאבה דרך המשאבה והמהדק פתוח. באופן ידני לחץ על המשאבה עד שהתקשורת מתחילה לזרום לתוך כלי chemostat. לשחרר צינורות ממשאבה, תקשורת צריכה לזרום בחופשיות לתוך כלי chemostat. כאשר התקשורת מגיעה לצינור השפכים, חבור מחדש צינורות לשאיבה ולצבוט.
  5. התחל running התכנית הבסיסית עם סט גלגל מניע ל400 סל"ד והטמפרטורה שנקבעה ב30 ° C.
  6. על מנת לכייל את 2 בדיקות לעשות, לכבות את אספקת אוויר ולעבור לשימוש בגז חנקן. חכה לפחות שעה אחת וערך מדד שיא כמו "נמוכה לקריאה". לעבור בחזרה לאספקת אוויר (כלומר המכילה ריכוז חמצן סביבה), לחכות לפחות שעה אחת נוספת ומדידת שיא כמו "גבוהה לקריאה".
  7. ליזום הקלטת נתונים באמצעות תוכנת איריס.

4. חיסון

  1. השתמש 70% אתנול לעקר החלק העליון של כלי התרבות.
  2. הסר את הבורג על גבי כלי שיט ופיפטה 1 מיליליטר של תרבות לילה לתוך כלי chemostat. הדק מחדש את בורג.
  3. לציין את הזמן של חיסון באיריס.
  4. המתן כ24 שעות לתרבויות להגיע לשלב נייח מוקדם. כתרבות גדלה, חמצן וחומציות מומסים יקטנו. במקרה של תקשורת הגבלת גלוקוז, חמצן מומס יחזור בPHA נייח ~ 100%se. למגבלות תזונתיים אחרות חמצן מומס יישאר <100% בשלב נייח.

5. ייזום משאבות והשגת מצב יציב

  1. שיעור הדילול מחושב על ידי חלוקת קצב הזרימה (עד כמה תקשורת זורמת לתוך הכלי לשעה) על ידי תרבות הנפח. לדוגמא, שימוש בנפח של 300 מיליליטר שיעור דילול של 0.1 אומר ש30 מיליליטר של תקשורת מתווסף לתרבות בכל שעה. מכיוון שהמערכת נמצאת בלחץ חיובי באותו הנפח הוא להסיר את הכלי להבטיח שהתרבות היא מדוללת ברציפות. מגוון רחב של שיעורי דילול (ד ') ניתן להשתמש שלא יעלה על השיעור המרבי הצמיחה (מקסימום μ) של התאים, ומעליו התא יהיה דהוי של chemostat.
  2. בחר הגדרות משאבה, אשר מפרט את מספר שניות שהמשאבה היא לסירוגין, כדי לבסס את קצב הזרימה הרצויה. המשאבה מספקת תקשורת בשיעור של ~ 0.11 מיליליטר / שנייה.
  3. הגדרת תכנית באמצעות int Sixforserface המציין את תזמון המשאבה, טמפרטורה ומהירות impellor. הפעל את התכנית.
  4. רוקן את מכלי האיסוף של נוזל ולהקליט את הזמן.
  5. אחרי לפחות שעות, השתמש גליל סיים למדוד כמה תקשורת הוסרה מהכלי. זה יהיה שווה את הנפח שנוסף לכלי שיט chemostat. לחשב את שיעור הדילול (D = השפכים V / V תרבות / שעה). התאם את הגדרות משאבה אם שיעור דילול מחושב אינו תואם את שיעור דילול הרצוי.
  6. במצב יציב, צפיפות תאים בchemostat אינה משתנה לאורך זמן. זו ניתן למדוד ללא מביך את התרבות על ידי דגימת יצוא. אנו מבצעי מגדירים השגת המצב יציב כמדידות צפיפות תאים זהות שמופרדות על ידי הכפלת אוכלוסייה אחת לפחות. להגיע למצב יציב ייקח כשמונה דורות תרבות לאחר תחילת דילול התרבות. במצב יציב, תאים גדלים באופן מעריכי (I.דואר. קצב קבוע צמיחה לאורך זמן) בתנאים מוגבלים בחומרים מזינים. זמן ההכפלה של האוכלוסייה (זמן דור) הוא ln (2) / D.
  7. המשך למדוד מעת לעת כמויות שפכים לתקופת הניסוי, כדי להבטיח ששיעור דילול קבוע נשמר.

6. תאי לימוד גידול בשיעורים שונים בתנאי מצב יציב: יישום 1

  1. במצב יציב בchemostat, קצב הגידול של האוכלוסייה של תאים הוא שווה לשיעור הדילול. באופן שיטתי לשנות את שיעור הדילול שניתן לגדל תאים בשיעורים שונים. זה מאפשר הלימוד השיטתי של פרמטרים פיסיולוגיים המשתנים בקצב צמיחה הכולל נפח תא, שלב מחזור התא והתנגדות ללחץ. בנוסף, פרופילי מצב יציב של mRNA הגלובלי, חלבון ורמות המטבוליט ניתן assayed בתאים הולך וגדל בקצב שונה. ישנן שתי דרכים לרכישת דגימות:
  2. דגימות קטנות יכולות להיות פסיבי obמזרקה על ידי הצבת סוף צינור השפכים לצינור מיליליטר 1.5 מיליליטר או 15. ניתן להשיג מדגם של 1-5 מ"ל בכמה דקות (תלוי בקצב הזרימה). ניתן למדוד פרמטרים פיסיולוגיים רבים מדוגמאות אלה.
  3. ניתוחי ביטוי גנים, או המטבוליט דורשים דגימות גדולות יותר, כי יש לקבל מהר ככל האפשר. מניחים את הקצה של צינור השפכים לתוך צינור חרוטי 15 מיליליטר. שחרר את הבורג מחזיק את קצה המתכת של צינור השפכים ולדחוף למטה בעדינות. ~ 10 מדגם מיליליטר במהירות ימלא הצינור שלך. יש לזכור כי הנפח בכלי chemostat השתנה. אם רבות דגימות רצופות נלקחות זה עשוי להיות נחוץ כדי להפחית את הזרימה כדי לשמור על שיעור דילול מתמיד.

7. יישום 2: מדידה מדויקת של הבדלים בשיעורי צמיחה בין גנוטיפים בסביבות מבוקרות באמצעות מבחני תחרות מבוססות Cytometry הזרימה

  1. Chemostats יכול לשמש כדי לכמת את ההשפעה של ריכוז חומר מזין באופן מדויקעל הבדלים בשיעורי צמיחה (כלומר כושר) בין רקע גנטי שונה. על ידי זני שיתוף culturing שכותרתו עם חלבוני ניאון שונים שיעור השינוי בשפע יחסי בגידול מעריכי נקבע. ביצוע assay זה בשיעורים שונים דילול (D) מאפשר הלימוד של השפעות של ריכוז חומר מזין (ים) על הבדלי כושר.
  2. להקים תרבויות מצב יציבה של שני הזנים בכלי chemostat נפרדים עם שיעורי דילול זהים ונפח של 300 מיליליטר.
  3. באופן פסיבי לדוגמא 1 מיליליטר מכל כלי. ספין למטה תאים, resuspend ב פוספט שנאגרו מלוח (PBS) ומקום ב 4 ° C. דגימות אלה מכילות דגימות תאים הומוגנית, שהם שולט על ניתוח התזרים cytometry שלאחר מכן.
  4. מניחים את צינור השפכים מכלי שיט אחד לautoclaved גליל סיים. שחרר את הבורג מחזיק את קצה המתכת של צינור השפכים ובעדינות לדחוף למטה לגרש תאים מchemostat. כאשרהנפח מגיע 150 מיליליטר, להחזיר את סוף המתכת של צינור השפכים למיקום המקורי שלה (300 מיליליטר). חזור עם הכלי השני, באמצעות גליל סיים שונה.
  5. השתמש 70% אתנול כדי לשמור על סטריליות בעת הסרת בורג בחלק העליון של כלי chemostat. מניחים משפך בפתיחה ויוצקים 150 מיליליטר מהתרבות אחרת לתוך כלי chemostat. הדק מחדש את בורג. חזור עם הכלי השני, תוך שימוש במשפך השני. כל כלי chemostat כעת מכיל תערובת של שני הזנים.
  6. להשיג מדגם מיליליטר 1 מכל כלי שיט באמצעות דגימה פסיבית בכל שעות 2-6. ספין למטה תאים, resuspend ב PBS ולאחסן ב 4 ° C. המשך נטילת דגימות להקלטת הזמן כל דגימה נלקחה 2-3 ימים בזהירות.
  7. בסוף הניסוי, sonicate ולדלל דגימות ל~ 2 x 10 6 תאים / מיליליטר. באמצעות cytometry זרימה, למדוד את חלקן של שני הזנים במדגם זה. כשני הזנים גדלים באופן אקספוננציאלי, הבדל שיעור גידול היחסי הואנקבע על ידי רגרסיה ליניארית של ln (strain1/strain2) נגד זמן (נמדד בדורות). השיפוע של רגרסיה הוא ההבדל היחסי בקצב צמיחה (כלומר יתרון הכושר) של אחד זן ביחס לאחרים.
  8. כתרבות המעורבת יכולה לקחת קצת זמן כדי להגיע למצב יציב חדש, נקודות זמן המוקדם עשויות להתאים היטב לרגרסיה. בעיה זו נפתרה על ידי המיטב המאפשר 2-3 דורות לחלוף לפני תחילת דגימה או הסרת נקודות מוקדם כי הם חריגים ברורים. לעומת זאת, ברגע שזן אחד outcompeted אחר נתונים הם כבר לא שימושיים ולא לכלול את הנקודות הללו.

8. יישום 3: אבולוציה ניסויית

  1. אבולוציה ניסיונית שבוצעה בchemostats בוחרת עבור מוטציות שהם גדלו בכושר בסביבה מוגבל בחומרים המזינה. בחירה מתבצעת בדרך כלל על פני מאות דורות.
  2. להקים תרבות chemostat מצב יציב באמצעות מתחגנוטיפ של ידוע (ורצף הגנום רצוי ידוע) ומזין הגבלה מוגדרת.
  3. כדי לשמור על "המאובנים" של אוכלוסיית ההסתגלות פסיבית לטעום chemostat כל 2-3 ימים ולאחסן את הדגימה בגליצרול 15% ב -80 ° C.
  4. לפקח על מאגר המדיה ולחדש עם מדיה חדשה לפי צורך.
  5. לשמור על התרבות גדלה באופן אקספוננציאלי לכמה מאה דורות.
  6. לאחר השלמת את צלחת בחירת מדגם של תאים על צלחות אגר מוצקות. לאחר התאים גדלו לתוך מושבות, לבחור מדגם מוטה של ​​מושבות באמצעות קיסמים ולחסן שיבוטים לתוך בארות בודדות של צלחת 96 היטב המכילה המדיה 100 μl. לאפשר דגימות משובטים לגדול בין לילה, להוסיף של גליצרול 30% וחנות 100 μl ב-80 ° C.
  7. לאפיין שיבוטים על ידי רצף הגנום כולו וביצוע מבחני פנוטיפי כולל הערכה של כושר, באמצעות מתח התייחסות שכותרתו fluorescently משותף, כפי שמתוארים ביישום 2. </ Li>

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

יתרון עיקרי של chemostats הוא היכולת לשלוט על קצב הצמיחה של תאים בניסוי על ידי שינוי שיעור הדילול. בשמרי ניצנים, שמר אפייה, המורפולוגיה של תא הוא אינפורמטיבי של השלב שלה במחזור חלוקת תא. אוכלוסיות עם שיעורי צמיחה גבוהים יותר מכילות שיעור גבוה יותר של תאים המתחלקים באופן פעיל, כפי שנקבע על ידי מדידת החלק היחסי של תאי unbudded (איור 5 א). ניתוח של ביטוי mRNA העולמי בתרבויות chemostat הוכיח כי הביטוי של גנים רבים באים לידי ביטוי באופן דיפרנציאלי כפונקציה של שיעור צמיחה (5B דמויות ואיור 5 ג).

הכושר היחסי של גנוטיפים שונים יכול להיקבע על ידי ביצוע מבחני תחרות בchemostats שימוש בתאים שכותרתו fluorescently וניתוח cytometry זרימה (איור 6 א). איור 6 מראה תוצאת נציג שבו זן מוטנטי היה com peted נגד זן wildtype המתויג fluorescently. בדוגמא זו, יש הזן מוטנטי 40% יתרון שיעור צמיחה לדור. לשם השוואה, מתח wildtype לא מתויג התחרה נגד מתויג fluorescently מתח wildtype אינו שונה בקצב צמיחה שלה.

Chemostats לספק אמצעי להפעלת לחץ סלקטיבי מוגדר ורציף על תאים. ניתוח רצף הגנום כולו יכול לשמש כדי לזהות מוטציות שנרכשו בתאים עם כושר מוגבר. ניסויי אבולוציה מסתגלים בתאי שמרים בchemostats המוגבל התזונתי שונה זיהו עותק מספר גרסאות כמנגנון תכוף וחוזר והנשנה של שמוטציות אדפטיבית נוצרות. לדוגמא, בניסויי אבולוציה אדפטיבית עצמאיים שבוצעו בchemostats המוגבל בחנקן תוך שימוש במקורות חנקן שונים, מספר עותק מספר הגרסאות (CNVs) הכולל את גן GAP1 זוהו 11 (איור 7).

t "> Chemostats להוות כמה אתגרים ייחודיים שאינם נתקלו בדרך אחרת בשיטות מיקרוביולוגיות סטנדרטיות. ניתן למצוא בעיות ופתרונות ספציפיים לchemostat ניסויים פוטנציאליים בטבלה 1.

איור 1
איור 1. תרשים של chemostat. Chemostat כולל מאגר מדיה, משאבה, כלי chemostat, צינור שפכים, וקיבול איסוף.

איור 2
איור 2. מודל מתמטי של chemostat. משוואה דיפרנציאלית 1 מתארת ​​את השינוי בצפיפות תאים (x) בchemostat לאורך זמן, שהוא התוצאה של צמיחת תאים והסרת תאים על ידי דילול (המוות של תאי הנחה הוא להיות זניח). מונה הציע 3 שצמיחת תא (μ) תלויהים בריכוז חומרי הזנה חיצוני בהתאם למערכת יחסים מסוג מיכאליס מנטן-הכולל את המשתנים של שיעור מקסימאלי צמיחה מקסימום) ומתמיד חצי מקסימאלי שיעור צמיחה (K ים). שיעור הדילול (ד ') נקבע על ידי השיעור של בנוסף תקשורת והסרת התרבות. משוואת ההפרש 2 מתארת ​​את שיעור השינוי בריכוז הגבלה התזונתי (ים) בכלי chemostat. השינוי בריכוז של חומרים מזינים המגבילים בכלי chemostat תלוי בריכוזו בתקשורת inflowing (R), הדילול שלה על ידי יצוא (ד ') וצריכה על ידי התאים, שהוא תלוי בפרמטרי תא μ המקסימום, K ים ותשואה קבועה, Y. לפישוט, Y הנחה הוא להיות מתמיד בשיעורי צמיחה שונים. המשתנים, והיחידות טיפוסיות שלהם, במשוואות דיפרנציאליות רגילות בשילוב הם x - מאורות תאity (תאים / מיליליטר), זה - הגבלת ריכוז חומר מזין (מיקרומטר), μ מקסימום - שיעור מקסימאלי צמיחה (-1 שעה), של K - ריכוז חומרי הזנה שבקצב הצמיחה שווה מקסימום μ / 2 (מיקרומטר), Y - תשואה שיעור דילול (-1 שעה), R - - (תאים / מיליליטר / מיקרומטר), D ריכוז חומרי תזונה במאגר מדיה (מיקרומטר).

איור 3
איור 3. גישה למצב יציב כפי שנחזה על ידי המודל המתמטי. ריכוז תזונתי (אדום) וצפיפות תאים (כחול) להשיג אינו אפס מדינות יציבה.

איור 4
איור 4. הקמת מגוון הגבלה של חומרים מזינים. שמר האפייה היה גדל בריכוזים שונים של גלוקוז והצפיפות הסופית נקבעה. קשר לינארי מצביע על כך שריכוז החומרים המזינים הוא בטווח המגביל.

איור 5
איור 5. פיזיולוגיה של תא משתנה עם קצב צמיחה. chemostat מאפשר מחקרים מבוקרים של הקשר בין שיעור צמיחה ו) חלוקת תא כassayed על בסיס תא המורפולוגיה (כלומר את החלק היחסי של תאי מנוצן). השפע של ~ 25% משמרי mRNAs תלוי בקצב צמיחה: עליות לדוגמא את הגן ב ') UTR2 בביטוי עם עלייה בקצב הצמיחה בשני גלוקוז (טו) ו( chemostats Δ-מוגבל חנקן) וC הגן) ASM1 יורד ברמת ביטוי עם עלייה בקצב הצמיחה בגלוקוז (טו) ומוגבל בחנקן (Δ) chemostats 10.

איור 6
איור 6. מבחני תחרות המתח בchemostats. א) שני זנים שמתויגים באופן דיפרנציאלי על ידי חלבוני ניאון הביעו constitutively הם שיתוף תרבותיים בchemostat בודד ושיעור השינוי בשפע היחסי של שני הזנים נקבע בכל 2-4 דורות באמצעות cytometry זרימה. ב) הכושר היחסי של זן נקבע על ידי רגרסיה ליניארית של הלוג הטבעי (LN) של רטיo של שני הזנים נגד הזמן נמדדו בדורות. לחץ כאן כדי להציג דמות גדולה.

איור 7
איור 7. בחירה לטווח ארוך בchemostats בוחרת ביעילות למוטציות עם כושר מוגבר. ניתוח הגנום בקנה מידה של מוטציות זיהה שחלופים בכרומוזומים תכופים ומספר להעתיק וריאציה (CNV) במוטנטים עם כושר מוגבר. ניסויים בלתי תלויים אדפטיבית אבולוציה בתוצאות שונות הגבלת חנקן תנאים בבחירה עבור אללים CNV שונים במוקד GAP1 (demarked על ידי קווים מקווקווים אפורים), אשר מקודד permease חומצת אמינו הכללית. כל נקודת נתונים היא היחס של עותק דנ"א מספר בזן התפתח בהשוואה לזן cestral נמדד באמצעות microarray-DNA שבו זמנית מנתח את כל גן (שחור).

טבלת 1. שולחן של בעיה ופתרונות אפשריים.

בעיה פתרון
ה-pH נמוך בכלי תרבות. ה-pH יכול להיות במעקב בזמן אמת ובשליטה על ידי תוספת אוטומטית של חומצה / בסיס. לחלופין, ניתן להשתמש בתקשורת שנאגרו.
תאי flocculant וbiofilms בכלי תרבות. שמור על התרבות מעורבת היטב על ידי הפעלת impellor ב> 400 סל"ד.
צמיחה בקווי הזנת תקשורת. השימוש במסננים בנמל המפרצון מפחית את הפוטנציאל לקולוניזציה של קווי הזנת תקשורת.
סנכרון סלולרי ולעשות 2 תנודות יציבים ichemostats המוגבל פחמן n. ניתן להימנע אלה באמצעות שיעורי דילול גבוהים יותר והימנעות מהתקופות ממושכות של רעב לפני התחלת דילול התרבות.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

Chemostats לאפשר הטיפוח של חיידקים בתנאי מצב יציב בשליטת צמיחה. התאים גדלים ברציפות בקצב קבוע וכתוצאה מכך סביבה חיצונית משתנה. זאת בניגוד לשיטות התרבות אצווה שבסביבה החיצונית משתנית ללא הרף ובקצב צמיחת תאים נקבע על ידי האינטראקציה המורכבת של הסביבה וגנוטיפ. לפיכך, יתרון עיקרי של culturing חיידקים בchemostats על תרבויות אצווה הוא היכולת לשלוט באופן ניסיוני את קצב הגידול של תאים.

הקצב שבו תא גדל הוא התוצאה של יחסי גומלין בין תהליכים תאיים רבים, כולל חישה תזונתית, הולכים אותות, סינתזת macromolecular וחילוף חומרים. שימוש chemostats בשילוב עם שיטות אנליטיות גלובליות מאפשר חקירה של איך קצב צמיחה משפיעה תהליכים בסיסיים בתא ולהיפך איך התא מווסת ומתאם את התהליך סלולארי עם קצב צמיחה שלה. מחקרים בתאי wildtype הראו כי ריכוזים סלולריים של RNA וחלבון מושפעים עמוקות משיעורי צמיחת תאי 6 ולאחרונה הוכח שtranscriptome 10,12,13 וmetabolome 8 מושפעים באופן דרמטי בשיעורי צמיחת תא.

המחקר של התנהגות מוטציה בchemostats מספק אמצעי רב עוצמה פוטנציאלית של לימוד המסלולים, כי הם חשובים לויסות קצב צמיחה 14. באמצעות רצף תפוקה גבוהה של אוספי המינימרקטים מולקולריים של אלפי מוטציות 15 עכשיו זה אפשרי זמנית מבחני אלה מאפשרים מחקרים שיטתיים של הדרישות הגנטיות לצמיחה בסביבות מוגבלת בחומרים מזינים. יש לציין, עם זאת, כי אחת המגבלות של chemostats הוא שהם אינכם מתייחסים להטרוגניות הבסיסית בשיעורי צמיחת תא בודדים שניתן להעריך באמצעות שיטות מיקרוסקופיה התא בודדות 16.

ass = "jove_content"> Chemostats גם לספק מערכת אידיאלית לחקר אבולוציה של חיידקים. הגבלה תזונתית היא לחץ סלקטיבית רלוונטי מבחינה אקולוגית ושיעור צמיחה מהווה מרכיב מרכזי של כושר מיקרוביאלי. Chemostat מספק אמצעי לשליטה מדויקת בלחץ סלקטיבי ולומדים כיצד רשתות מולקולריות להתפתח. זיהוי הלוקוסים הגנטיים שהם מטרות של בחירה ומוכיח יתרון ההסתגלות שלהם באותה הסביבה מוגבלת תזונתית 11,17-20 מקיים את ההבטחה של הבנת הבסיס הפונקציונלי של אבולוציה אדפטיבית.

Chemostats משמש יותר ויותר בתחומי מחקר חדשים הכוללים המחקר של דינמיקת תעתיק 21,22 ותנודות מטבולי 23-26. היישום שלהם באקולוגיה הוכיח שימושי בחקר דינמיקת טורף, טרף 27. עניין מחודש בויסות גדילת תאי יונקים, וירידת הערך שלה במחלה אנושית, עשוי להניע את חזרה לסטהdy של תאי יונקים בchemostats שימוש בתאים שיכולים להיות מתורבת בהשעיה 28.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

החוקרים מצהירים כי אין להם אינטרסים כלכליים מתחרים.

Acknowledgments

עבודה זו נתמכה על ידי להתחיל את כספים בצורה של אוניברסיטת ניו יורק. אנו מודים מאטרייה דאנהם ומאט בראואר, שפתח בתחילה את השימוש בbioreactors Sixfors כchemostats.

Materials

Name Company Catalog Number Comments
Infors-HT Sixfors Chemostat Appropriate Technical Resources, Inc.  
Glass Bottle 9.5 L Fisher Scientific 02-887-1 For Media Vessel and Hosing
Pinchcock Fisher Scientific 05-867 For Media Vessel and Hosing
Stopper, Size 12, Green Neoprene Cole-Palmer EW-62991-42 For Media Vessel and Hosing
Straight Connector Cole-Palmer EW-30703-02 For Media Vessel and Hosing
General purpose ties 4 in Fisher Scientific NC9557052 For Media Vessel and Hosing
Tubing, Silicone Rubber Small Parts B000FMWTDE For Media Vessel and Hosing
Tubing, Silicone, 3/8 in OD Fisher Scientific 02-587-1Q For Media Vessel and Hosing
Tubing, Silicone, 7/32 in OD Fisher Scientific 02-587-1E For Media Vessel and Hosing
Tubing, Stainless Steel, 3/16 in OD McMaster-Carr 6100K164 For Media Vessel and Hosing
Tubing, Stainless Steel, 3/8 in OD McMaster-Carr 6100K161 For Media Vessel and Hosing
Hook Connectors Fisher Scientific 14-66-18Q For Media Vessel and Hosing
Ratchet Clamp Cole-Palmer EW-06403-11 For Media Vessel and Hosing
Luer, Female Cole-Palmer EW-45512-34 For Media Vessel and Hosing
Luer, Male Cole-Palmer EW-45513-04 For Media Vessel and Hosing
Millipore Aervent MTGR05010 62 mm Filter, 0.2 μm Fisher Scientific MTGR05010 For Media Vessel and Hosing
PTFE Acrodisc CR 13 mm filters, 0.2 μm Fisher Scientific NC9131037 For Media Vessel and Hosing
Direct-Reading Flowtube for Air Cole-Palmer EW-32047-77 For Nitrogen Gas Setup
Direct-Reading Flowtube for Nitrogen Cole-Palmer EW-32048-63 For Nitrogen Gas Setup
Gas Proportioner Multitube Frames Cole-Palmer EW-03218-50 For Nitrogen Gas Setup
Regulator, Two-Stage Analytical Airgas Y12-N145D580 For Nitrogen Gas Setup
Hose Adaptor, Stainless Steel Airgas Y99-26450 For Nitrogen Gas Setup
Hose Male Adaptor Airgas WES544 For Nitrogen Gas Setup
Norprene Tubing US Plastics 57280 For Nitrogen Gas Setup
Tripod Base Cole-Palmer EW-03218-58 For Nitrogen Gas Setup
Valve Cartridges Cole-Palmer EW-03217-92 For Nitrogen Gas Setup
Carboy 10 L Fisher Scientific 02-963-2A For Media Preperation
Steritop Sterile Vacuum Bottle-Top Filters, 1,000 ml, PES membrane; for 45 mm neck size Fisher Scientific SCGP-T10-RE For Media Preperation
Media Bottle 100 ml, 45 mm neck size Fisher Scientific FB-800-100 For Media Preperation
calcium chloride·2H2O Fisher Scientific C79-500 Media Reagents
sodium chloride Fisher Scientific BP358-1 Media Reagents
magnesium sulfate·7H2O Sigma Aldrich 230391 Media Reagents
potassium phosphate monobasic Fisher Scientific AC424205000 Media Reagents
ammonium sulfate Fisher Scientific AC423400010 Media Reagents
potassium chloride Sigma Aldrich P9541 Media Reagents
boric acid Sigma Aldrich B6768 Media Reagents
copper sulfate·5H2O Sigma Aldrich 209198 Media Reagents
potassium iodide Sigma Aldrich 60400 Media Reagents
ferric chloride·6H2O Fisher Scientific I88-100 Media Reagents
manganese sulfate·H2O Sigma Aldrich 230391 Media Reagents
sodium molybdate·2H2O Sigma Aldrich M7634 Media Reagents
zinc sulfate·7H2O Fisher Scientific Z68-500 Media Reagents
biotin Fisher Scientific BP232-1 Media Reagents
calcium pantothenate Fisher Scientific AC24330-1000 Media Reagents
folic acid Sigma Aldrich F7876 Media Reagents
inositol (aka myo-inositol) Fisher Scientific AC12226-1000 Media Reagents
niacin (aka nicotinic acid) Sigma Aldrich N4126 Media Reagents
p-aminobenzoic acid Fisher Scientific AC14621-2500 Media Reagents
pyridoxine HCl Sigma Aldrich P9755 Media Reagents
riboflavin Sigma Aldrich R4500-25G Media Reagents
thiamine HCl Fisher Scientific BP892-100 Media Reagents
Leucine Sigma Aldrich L8000-100G Media Reagents
Uracil Sigma Aldrich U0750 Media Reagents
Dextrose Fisher Scientific DF0155-08-5 Media Reagents

DOWNLOAD MATERIALS LIST

References

  1. Ingraham, J. L., Maaloe, O., Neidhardt, F. C. Growth of the Bacterial Cell. , Sinauer Associates, Inc. (1983).
  2. Cell Growth: Control of Cell Size. Hall, M. N., Raff, M. C., Thomas, G. , CSHL Press. (2004).
  3. Monod, J. La technique de culture continue, theorie et applications. Ann. Inst. Pasteur. 79, 390-410 (1950).
  4. Novick, A., Szilard, L. Description of the chemostat. Science. 112, 715-716 (1950).
  5. Kjeldgaard, N. O., Maaloe, O., Schaechter, M. The transition between different physiological states during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19, 607-616 (1958).
  6. Maaloe, O., Kjeldgaard, N. O. Control of macromolecular synthesis. , W.A. Benjamin. (1966).
  7. Saldanha, A. J., Brauer, M. J., Botstein, D. Nutritional Homeostasis in Batch and Steady-State. Culture of Yeast. Mol. Biol. Cell. 15, 4089-4104 (2004).
  8. Boer, V. M., Crutchfield, C. A., Bradley, P. H., Botstein, D., Rabinowitz, J. D. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol. Biol. Cell. 21, 198-211 (2010).
  9. Boer, V. M., de Winde, J. H., Pronk, J. T., Piper, M. D. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J. Biol. Chem. 278, 3265-3274 (2003).
  10. Brauer, M. J., et al. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol. Biol. Cell. 19, 352-367 (2008).
  11. Gresham, D., et al. Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc. Natl. Acad. Sci. U.S.A. 107, 18551-18556 (2010).
  12. Regenberg, B., et al. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol. 7, R107 (2006).
  13. Castrillo, J. I., et al. Growth control of the eukaryote cell: a systems biology study in yeast. J. Biol. 6, 4 (2007).
  14. Cipollina, C., et al. Revisiting the role of yeast Sfp1 in ribosome biogenesis and cell size control: a chemostat study. Microbiology. 154, 337-346 (2008).
  15. Gresham, D., et al. System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae. Genetics. 187, 299-317 (2011).
  16. Levy, S. F., Ziv, N., Siegal, M. L. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol. 10, e1001325 (2012).
  17. Kao, K. C., Sherlock, G. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat. Genet. 40, 1499-1504 (2008).
  18. Gresham, D., et al. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet. 4, e1000303 (2008).
  19. Wenger, J. W., et al. Hunger Artists: Yeast Adapted to Carbon Limitation Show Trade-Offs under Carbon Sufficiency. PLoS Genet. 7, e1002202 (2011).
  20. Dunham, M. J., et al. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 99, 16144-16149 (2002).
  21. Ronen, M., Botstein, D. Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source. Proc. Natl. Acad. Sci. U.S.A. 103, 389-394 (2006).
  22. Kresnowati, M. T. A. P., et al. When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol. Sys. Biol. 2, 49 (2006).
  23. Tu, B. P., Kudlicki, A., Rowicka, M., McKnight, S. L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science. 310, 1152-1158 (2005).
  24. Tzur, A., Kafri, R., LeBleu, V. S., Lahav, G., Kirschner, M. W. Cell Growth and Size Homeostasis in Proliferating Animal Cells. Science. 325, 167-171 (2009).
  25. Conlon, I., Raff, M. Size control in animal development. Cell. 96, 235-244 (1999).
  26. Conlon, I. J., Dunn, G. A., Mudge, A. W., Raff, M. C. Extracellular control of cell size. Nat. Cell Biol. 3, 918-921 (2001).
  27. Fussmann, G. F., Ellner, S. P., Shertzer, K. W., Hairston, N. G. Crossing the hopf bifurcation in a live predator-prey system. Science. 290, 1358-1360 (2000).
  28. Cohen, E. P., Eagle, H. A simplified chemostat for the growth of mammalian cells: characteristics of cell growth in continuous culture. J. Exp. Med. 113, 467-474 (1961).

Tags

מדעי סביבה גיליון 80, ביולוגיה מולקולרית ביולוגיה חישובית ביולוגיה של מערכות ביולוגיה של תא גנטיקה מיקרוביולוגיה סביבתית ביוכימיה Chemostat צמיחה בשיעור מצב יציב הגבלה תזונתית התפתחות אדפטיבית
השימוש בChemostats בביולוגיה מיקרוביאלית מערכות
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Ziv, N., Brandt, N. J., Gresham, D.More

Ziv, N., Brandt, N. J., Gresham, D. The Use of Chemostats in Microbial Systems Biology. J. Vis. Exp. (80), e50168, doi:10.3791/50168 (2013).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter