Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Neuroscience

兔动脉袋显微外科分叉动脉瘤模型

Published: May 14, 2020 doi: 10.3791/61157

Summary

开发和测试用于颅内动脉瘤治疗的血管内装置仍然非常重要。今天使用的大多数动脉瘤模型都忽略了动脉退行性壁的重要特征或真正分叉的血液动力学。因此,我们设计了一种新型的兔动脉袋分岔模型。

Abstract

颅内动脉瘤的血管内治疗在过去几十年中变得越来越重要,因此对测试血管内装置的需求增加。高度有必要使用符合流变学、血流动力学和动脉瘤壁条件的动物模型。因此,本研究的目的是设计一种新的标准化和可重复的手术技术,以在兔子中产生具有未修饰和修饰壁条件的自体动脉袋分叉动脉瘤。

分叉动脉瘤是通过左颈总动脉右侧吻合术产生的,两者都是显微外科缝合的动脉袋的母动脉。从右颈总动脉近端取出移植物,用于对照组(n = 7,立即自体再植入)或修饰组(n = 7,与100个国际单位弹性蛋白酶一起孵育20分钟,自体再植入)组。创建后立即通过荧光血管造影控制袋和母动脉通畅性。在随访(28天)时,所有兔子都接受了造影剂增强磁共振血管造影和荧光血管造影,然后进行动脉瘤收获,宏观和组织学评估。

共有16只雌性新西兰白兔作。两只动物过早死亡。在随访时,85.72%的动脉瘤仍然是专利。两组都显示动脉瘤大小随着时间的推移而增加;对照组(创建时为6.48±1.81 mm3 ,随访时为19.85±6.40 mm3 ,p = 0.037),这比修饰组(创建时为8.03±1.08 mm3 ,随访时为20.29±6.16 mm3 )更为明显,p = 0.054)。

我们的研究结果表明,这种新的兔子模型是充分的,它允许在显微外科方法中创建具有不同壁条件的分叉动脉瘤。鉴于良好的长期通畅性和动脉瘤随时间推移生长的特性,该模型可作为新型血管内疗法临床前评估的重要工具。

Introduction

颅内动脉瘤 (IA) 破裂引起的蛛网膜下腔出血可通过血管内或显微外科闭塞技术有效控制1234。不同的血管内疗法,克服盘绕后IA复发的主要局限性,在过去几十年中变得越来越重要,导致对测试血管内装置的需求增加。为了测试这些新的治疗方法,高度需要尊重流变学特性,血流动力学和动脉瘤壁条件的适当动物模型567。在这种情况下,临床和临床前研究已经揭示了动脉瘤壁疾病对动脉瘤破裂和闭塞后复发的重要作用,特别关注壁细胞的丧失789

到目前为止,兔子的实验性动脉瘤通常是通过弹性蛋白酶孵育的颈总动脉(CCA)残端或缝合成人工CCA分叉的静脉袋产生的。10111213141516 因此,从未描述过真正的动脉袋分叉模型。

本研究的目的是设计一种安全,快速和标准化的技术,用于在兔子模型中创建具有不同壁条件的分叉动脉瘤的显微外科手术(图1)。这是通过将未修饰和修饰的动脉袋缝合到两个CCA的人工分叉中来实现的。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

所有兽医护理均按照机构指南进行(所有实验均由瑞士伯尔尼州动物护理地方委员会批准(BE 108/16)),并在董事会认证的兽医麻醉师的监督下进行。1718严格遵守了ARR指南和3R原则。

注意:将所有动物饲养在 22\u201224 摄氏度 (°C) 的室温下,并保持 12 小时 (h) 的亮/暗循环。每次都提供免费的水,颗粒和随意的干草饮食。使用非参数Wilcoxon-Mann-Whitney-U检验进行统计分析。概率值 (p) ≤ 0.05 被认为是显著的。

1. 术前阶段

  1. 对所有计划手术的兔子进行详细的术前临床检查,紧挨着一个安静的无菌手术室,保持23±3°C的温度。
    1. 记录每只动物的体重,宏观评估粘膜,毛细血管再填充时间和脉冲质量。
    2. 进一步用听诊器和腹部触诊进行心脏听诊。
    3. 根据临床发现,将美国麻醉师协会(ASA)分类归因于每只兔子19。在研究中仅包括ASA I评分的动物。
    4. 用电动剃须刀剃除双耳外耳,并在耳动脉和静脉上涂抹丙胺卡因 - 利多卡因乳膏。
  2. 用20毫克(mg)/killogram(kg)氯胺酮,100mg / kg右美托咪定和0.3mg / kg美沙酮的组合通过注射器镇静兔子皮下注射(SC)。
  3. 让每只动物不受干扰至少15分钟。
  4. 此后,通过松开的面罩用3升(l)/分钟(分钟)补充氧合,并通过脉搏血氧仪进行稳定监测,将一个22 G插管放在左耳中央动脉,另一个22G套管放在对侧耳的耳静脉中。
  5. 剃除手术区域(颈部),皮内注射0.75%围切期罗哌卡因。接下来剃掉前额,准备放置小儿脑电图(EEG)传感器。
  6. 用丙泊酚1-2mg / kg静脉注射(IV)诱导全身麻醉以起作用。然后在二氧化碳图控制下立即用硅胶管(内径3毫米(mm))插管所有兔子的气管。之后,将所有兔子运送到手术室,将它们放在背卧位,并将管子连接到儿科圆圈系统。
  7. 通过氧气中的异氟醚实现麻醉加深和维持,目标是最大潮气末异氟醚浓度为1.3%。
  8. 确保临床和仪器监测(脉搏血氧仪,多普勒和侵入性血压,3导联心电图,脑电图,直肠温度监测以及吸入和呼出的气体),直到气管拔管。
  9. 为了保持水合作用,通过静脉通路以5ml / kg / h的连续速率输注(CRI)提供Ringer的乳酸盐。始终以10分钟的间隔使用脚趾捏合来确认适当的麻醉。
  10. 使用聚维酮碘从胸骨厩到两个颌角对手术区域进行消毒。现在,对手术场进行无菌覆盖。
  11. 在手术过程中,使用 CRI 为 50 μg/kg/min 的利多卡因和 3\u201210 μg/kg/min 的芬太尼镇痛。应用自发性或辅助通气以及允许性高碳酸血症。在手术期间至少进行一次动脉血气分析。
  12. 用去甲肾上腺素治疗相关低血压(平均动脉压< 60 mmHg)。使用加热垫或加热强制空气加热系统防止体温过低(直肠温度≤38°C)。

2. 手术阶段 – 步骤 I

  1. 从胸骨厩到颌角/喉部水平的正中皮肤切口开始手术。用手术刀,手术剪刀和镊子彻底切开皮肤和软组织。通过钝性夹层将皮下和脂肪垫内侧分开。
  2. 使用微镊子和手术剪刀,通过钝性夹层进入左侧胸锁乳突肌的前上脊。
  3. 在宏观上,进行钝器准备,并小心地将左CCA与远端的迷走神经分开,以进一步使用微镊子和手术剪刀避免喉部麻痹(图2)。请注意,左CCA的分叉是术中的标志(图3图4A)。对于以下所有步骤,请使用软组织扩张器来改善手术可视化。
  4. 在成功制备并从迷走神经中解放左远端CCA后,局部给予罂粟碱(40mg / ml,1:1稀释在0.9%等渗氯化钠溶液中)。用微拭子持续保护所有血管段,然后进一步从外部给予罂粟碱。将浸泡过罂粟碱的左CCA置于自体肌肉组织下方,以保护血管在手术显微镜的光线下干燥。
  5. 在手术过程中切换侧面,同时最大限度地提高外科医生的舒适度。在右侧重复相同的外科手术。在远端和近端切开CCA直至预定义的标志点(颌角/喉部和颈内静脉水平的颈动脉分叉; 图4A,B)。如前所述,重新插入吊具并施用微拭子和罂粟碱。
  6. 在右近端CCA结扎之前,通过静脉耳导管全身注射肝素(500国际单位(IU)/kg)。
  7. 从现在开始使用手术显微镜。首先,直接在宏观可见的近端标志点末端用4-0不可吸收缝合线连接右近端CCA,以避免动脉血管上的任何张力。
    1. 其次,通过使用血管夹进行测量,将6-0不可吸收的结扎正好在4\u20125 mm的远端应用,考虑到从第一个4-0结扎的远端切割后,所得动脉袋在每只动物中的标准化长度约为3\u20124 mm(图5A,C)。
  8. 拧紧6-0结扎后,用临时血管夹(通常用于脑动脉瘤手术)将右CCA尽可能远地夹住,以避免任何内皮损伤并形成用于冲洗的长血管段,以防止血栓形成(图5B)。
  9. 现在在4-0不可吸收结扎的远端进行切割。为了收获动脉袋(图5C),在6-0不可吸收结扎的远端进行第二次切割。
  10. 从所有软组织中仔细清洁动脉袋,并用血管夹测量其长度,宽度和深度(图5C)。如果不需要进一步修饰,请将自体动脉移植物保存在肝素化溶液(500 IU / 100ml在0.9%等渗氯化钠中)中,直到进一步使用。

3. 动脉袋退化

  1. 如果需要动脉袋降解,请仔细清洁软组织,并在实验当天用100IU的猪弹性蛋白酶在室温下溶解在5ml Tris缓冲液中预腮管20分钟。不要使用刷子技术。使用振荡器将动脉袋在光内和光外孵育。
  2. 在将袋子放入0.9%等渗氯化钠的肝素化溶液中之前,用解剖镊子在0.9%等渗氯化钠溶液中轻轻滑动三次3分钟,以洗出剩余的猪弹性蛋白酶。
  3. 如果需要,用硅胶制成的微管保持动脉袋的管腔打开;在整个手术过程中用湿微衬垫精心保护左右CCA。

4. 手术阶段 – 第二步

  1. 为了进一步准备CCA,将两个圆形的微拭子直接放在其下方,以更浅地移动动脉。现在,在远端第三端的左CCA下方放置一个带有紫色衬垫的微拭子,以便更好地可视化动脉。
  2. 用0.9%等渗氯化钠与溶解在100ml 0.9%等渗氯化钠中的500IU肝素溶液冲洗右近端CCA。为了形成无张力的吻合口,使用手术剪刀将其隧道输送到左侧,将正确的CCA放在脂肪垫/腹膜肌肉组织下方。切除动脉的软组织。
    1. 现在使用微型剪刀和镊子在右侧CCA的近端进行2毫米鱼嘴切口。
  3. 更换手术台上的一侧。用另一个临时血管夹夹夹住左远端CCA,然后用两个临时血管夹左端CCA。使用湿微签保护所有暴露的血管段,防止在手术光下干燥。
  4. 将左CCA的远端三分之一完全从软组织中解放出来并进行动脉切开术。使用手术微镊子,轻轻抓住一些软组织。现在抬高动脉,用手术微剪刀缓慢切开左远端CCA。用肝素冲洗血管段(500IU溶解在100ml 0.9%等渗氯化钠溶液中)。
  5. 用弯曲的微镊子和微剪刀进行动脉切开术后,将位于左CCA远端三分之一远端的动脉切开术扩大,测量颈动脉右钝和自体移植物直径的约2倍。这允许足够的血液流入动脉袋。
  6. 将动脉袋从肝素盐水溶液中取出。将袋子放在手术场中,在那里计划分叉。开始用不可吸收的9-0缝合线缝合右颈动脉钝口的后部,然后在鱼嘴切口水平处的颅骨后侧缝合。通过单针完成从远端到近端的缝合。
  7. 缝合时,通过连续灌溉保持所有弹性蛋白酶预浸渍袋湿润。在缝合袋的血管壁时,使用弯曲的手术微镊子轻轻打开管腔及其尖端。每当缝合左或右近端CCA的部分时,使用直式手术微镊子。之后,缝合水平背面。
  8. 接下来缝合水平前侧,从动脉瘤的圆顶开始移动到其底部。之后,从正面远端的单针开始,尾部移动。
    1. 对于缝合吻合口的所有步骤 4.5\u20124.8,请注意抓住靠近动脉切开术的血管部分,以避免医源性狭窄。此外,在整个外科手术过程中,用装有肝素化氯化钠溶液(500 IU溶解在100ml 0.9%等渗氯化钠中)的注射器在光下连续润湿所有血管段,并用湿微签保护它们。
    2. 在完成吻合口之前,用肝素化的0.9%等渗氯化钠溶液在腔内(500IU溶解在100ml 0.9%等渗氯化钠中)冲洗整个复合物。请注意,弹性蛋白酶修饰的动脉袋必须尽快缝制,因为它们有强烈的干燥和血栓形成倾向。由于袋中残余弹性蛋白酶浓度对消化周向血管的侵袭性行为,因此请快速进行手术以快速重新灌注血管复合物。
  9. 逐步移除所有临时血管钳。
    1. 从左侧CCA上取下远端夹钳。接受轻微出血,并通过在吻合口上轻轻印刻微拭子来固定出血。然后,取下右侧CCA的夹子,用微拭子和镊子轻轻按压,以避免血栓形成。
    2. 如果需要,更换临时血管夹以提供足够的凝血。之后,从左侧近端卸下两个血管夹。如果在任何步骤中需要,请更换夹子以允许凝固或进行重新拼接。
  10. 在该阶段进行血管复合物的荧光血管造影(图6图7)。
    注意:荧光血管造影是通过施用1ml荧光素IV,使用2个带通滤光片,带摄像机的智能手机和自行车聚光灯进行的。这一程序已在别处202122中描述。
  11. 最后,关闭手术地点。用3-0可吸收的缝合线重新填充并轻轻缝合脂肪垫,单个节点以保护吻合口。以相同的方式关闭皮下和皮肤。

5. 术后阶段

  1. 在手术结束时停止异氟醚和全身镇痛,并在吞咽反射恢复后立即提供气管拔管。
  2. 静脉注射0.5毫克/千克美洛昔康,静脉注射10毫克/千克阿司匹林(ASS),100微克维生素B12 SC和20毫克/千克氯氧基静脉注射。
  3. 提供补充性氧合和积极升温,直到兔子自发恢复胸骨卧位。
  4. 根据啮齿动物和兔子疼痛评估和管理指南2324,在前三天每天进行四次术后随访和动物护理。
  5. 根据疼痛评估评分表,通过外耳上施用芬太尼贴剂(12μg/ h),美洛昔康每天一次SC持续三天,美沙酮作为抢救治疗SC进行术后镇痛。在所有兔子中皮下注射250 IU / kg低分子肝素(LMH)三天。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

在由七只动物组成的试点系列之后,共有16只动物被纳入实验方案。两只动物过早死亡,因此被排除在最终分析之外(死亡率为12.5%)。在14只动物身上计算,对照组和修饰组在荧光血管造影过程中的即时动脉瘤通畅率为71.43%。四个动脉瘤必须通过连续的血栓清宫重新打开,并且在重复荧光血管造影后,所有病例都有记录的通畅性(100%)。MR和荧光血管造影组的动脉瘤通畅率为85.72%,28天后随访时弹性蛋白酶修饰组的动脉瘤通畅率为85.72%(两只动物显示完整的亲本动脉和动脉瘤血栓形成,因此被排除在进一步分析之外)。通过分析其余12例病例中3例的MR成像的三维重建(图9)观察到部分血栓形成。两组都显示出动脉瘤大小的增加。对照组:创建时6.48±1.81 mm3 ,随访时为19.85 ±6.40 mm3 ,p = 0.037(所有统计测试均使用非参数Wilcoxon-Mann-Whitney-U测试进行);修改组:创建时为8.03±1.08 mm3 ,而随访时为20.29±6.16 mm3 ,p = 0.054),两种增长率之间没有意义(p = 0.87)。术后无动脉瘤相关出血。对照组的平均外科手术持续时间为164±10分钟(范围,122\u2012187分钟),而改良组为201±13分钟(范围,158\u2012250分钟)。对照组平均需要 24 ± 1 根中断缝合线(范围,21\u201226)来创建动脉瘤,在弹性化酶组中需要 25 ± 2 针(范围,18\u201228)。 图8图9 显示了第28天分岔动脉瘤的组织学特征以及CE-3D-MRA形态测量值。

Figure 1
图1:实验设置的流程图。
总共,在7只动物的试点阶段之后,对16只动物进行了操作,并将其随机分配到对照组或弹性蛋白酶预处理。两只动物在术后早期死亡。 请点击此处查看此图的大图。

Figure 2
图2:初始操作步骤。
初始手术步骤,描绘左颈动脉(白色箭头),迷走神经(黑色箭头)(A)和左颈动脉与迷走神经远端的小心分离以避免喉部麻痹(B)。 请点击此处查看此图的大图。

Figure 3
图3:手术步骤示意图。
图中显示了新西兰白兔的主动脉弓(§)和两条颈动脉(左颈动脉,x;右颈动脉,#)(A)。在右颈近端动脉上,进行4-0结扎,并在远端(B)加6-0结扎。自体动脉袋(*)已被收获,右颈动脉的钝器被缝合到左颈动脉(C)的远端三分之一,形成人工复合动脉分叉(D)。 请点击此处查看此图的大图。

Figure 4
图4:左颈动脉分叉作为左侧和右侧的远端标志物(A,黑色*),颈内静脉作为准备右侧的近端标志物(B,白色*)。请点击此处查看此图的大图。

Figure 5
图5:照片显示了右颈动脉的近端4-0和6-0结扎,用于创建新的重要动脉袋(A),夹子放置在两个结扎带上方的右颈动脉(B)和自体收获袋(C)上。请点击此处查看此图的大图。

Figure 6
图6:复杂动脉生命(A)和弹性蛋白酶预处理后(A.1)分叉动脉瘤(*)的产生。
在进行荧光血管造影术显示母动脉和动脉瘤本身的通畅性后,情况相同(B,B.1)。 请点击此处查看此图的大图。

Figure 7
图7:血管复合物的荧光血管造影。
从手术位置缩小照片(A)在创建弹性蛋白酶预处理的复合物分岔动脉瘤(x)后。黑色*描绘右颈总动脉,白色*左。虚线显示颈部中部。在进行荧光血管造影显示母体动脉和动脉瘤本身的通畅性(B)之后,情况相同。 请点击此处查看此图的大图。

Figure 8
图 8:分岔星座中重要动脉瘤的 2 倍和 20 倍数字变焦的组织学示例。
重要壁(#)以高细胞密度为标志。*描绘了动脉瘤的管腔, a 是右侧的腔, b是左近端颈动脉的腔, § 动脉瘤的放大腔侧。 请点击此处查看此图的大图。

Figure 9
图9:与MR成像相关的组织学发现。
A)缝制在动脉分叉上的改良动脉袋的2倍数字缩放的例子部分血栓形成动脉瘤圆顶(#),动脉瘤腔(*),左近端(b)和远端(a)的管腔以及右颈动脉的管腔(c)。(B)描述了28天后动脉瘤的CE-3D-MRA形态测量值。 请点击此处查看此图的大图。

n 运行时间
(分钟)
重量(g) 缝合线数量
(n)
直径 母动脉近端至动脉瘤
(毫米)
缝合时间
(分钟)
直径 动脉瘤远端的母动脉
(毫米)
直径动脉瘤基线
(毫米)
卷基线
毫米 3
直径动脉瘤随访
(毫米)
卷跟进
毫米 3
重要袋
1 187 4100 24 2.5 54 2.8 1 1.96 1.5 5
2 183 4200 24 3.3 53 2.9 1 2.35 2.8 7.73
3 163 3800 26 3.4 66 3 1.5 4.71 3.1 28.03
4 122 3600 22 2.8 42 2.8 2 6.28 3.2 47.37
5 180 3700 24 3.2 45 3 2 10.99 2 15.82
6 149 3700 21 2.3 47 2.2 2 12.56 3.1 15.11
平均±扫描电镜 164.00 ±10.22 3850.00 ± 99.16 23.50 ± 0.72 2.92 ± 0.19 51.17 ± 3.52 2.78 ± 0.12 1.58 ± 0.201 6.48 ± 1.81 2.62 ± 0.29 19.85 ± 6.40
弹性蛋白酶袋
1 158 3400 26 2.9 76 2.6 2 9.42 2.1 12.26
2 180 3400 27 3.5 43 2.8 2 10.99 3.3 46.16
3 250 3900 27 3.5 70 3.2 1.4 6.59 2.2 10.1
4 208 4200 28 3 45 2.6 2 9.42 2.6 24
5 192 3660 18 2.8 53 2.8 2 8.24 2.7 4.03
6 217 3200 24 2.7 58 2.8 1.5 3.53 2.2 25.16
平均±扫描电镜 200.83 ± 13.00 3626.67 ± 151.58 25.00 ± 1.51 3.07 ± 0.14 57.50 ± 5.43 2.80 ± 0.09 1.82 ± 0.12 8.03 ± 1.08 2.52 ± 0.19 20.29 ± 6.16
p 值 0.06 0.22 0.14 0.46 0.42 0.5 // 0.46 // 0.87

表1:手术特性和CE-3D-MRA形态测量。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

我们的研究证明了在兔子中建立具有不同壁条件的真正分叉动脉瘤模型的可行性。总体而言,该研究纳入了14只平均体重为3.7±0.09 kg,平均年龄为112±3天的新西兰大白兔。85.72%的动脉瘤在28天的随访期间保持专利。两只动物过早死亡(死亡率为12.5%)。

先前的研究建议使用多种颅外动脉瘤模型来分析血管内动脉瘤治疗的管理25262728。但是,这些都无法比较不同的壁面条件。先前的实验已经研究了动脉瘤侧壁大鼠模型29中的去细胞化动脉瘤。当前研究中提出的模型代表了一种转化改进,因为模仿不同壁条件的真正动脉袋分叉模型尚未在文献中描述过。此外,人类颅内动脉瘤更常发生在动脉分叉处3031。此外,兔子模型被证明在血液动力学和凝血系统的可比性方面非常接近人类,并进一步证明具有成本效益323334

兔子的静脉袋模型(仅,复杂的双小叶,复杂的双小叶或宽颈)已经得到了很好的描述。12133536 如前所述,尚未描述将真动脉袋或退化的血管壁植入人工分岔的技术。373839 在我们的研究中,死亡率为12.5%。与发病率高、死亡率高达50%的文献相比,我们明显低于低发病率、低死亡率、高短期和长期动脉瘤通畅率的兔子,从而证明了在兔中建立复杂动脉分岔动脉瘤的可行性27。使本兔子系列能够降低发病率和死亡率的另一个重要因素是我们实验室12以前的经验实施手术技术。例如,仔细准备左CCA的长段的技术被应用并改进为仅解剖远端第三,特别是为了避免迷走神经和喉上神经上的医源性病变。此外,在进行无张力吻合术之前,从两个CCA中细致地去除高度血栓形成的软组织。缝合线总是从背面开始,以获得更好的视觉控制,保持较低的数量以避免医源性血栓形成。如果需要,在吻合口周围用自体脂肪组织进行密封,以尽量减少术后出血的风险;同样,在吻合口正上方重新粘合和缝合脂肪垫也提供了额外的保护作用。控制性准备和解剖迷走神经及相关喉纤维,以及充分准备右CCA近端和远端以形成无张力吻合口,在降低呼吸窘迫或喉麻痹的死亡率和发病率方面发挥关键作用12

使用LMH抗凝治疗方案三天,使用ASS(术后立即作为单次注射提供)以及新开始的肝素全身给药,然后关闭右CCA导致85.72%的动脉瘤和母体血管通畅。这些结果符合我们以前使用静脉袋模型10,11121340的经验。在这方面,术中荧光血管造影也有助于良好的长期通畅率,降低发病率。在动脉瘤本身或母动脉中检测到血栓的情况下,使用血栓清空术20进行吻合口的重新打开。未观察到自发性动脉瘤出血。然而,使用湿微拭子进行持续的腔外冲洗和血管保护,以及用肝素化的0.9%盐水溶液进行腔内冲洗,有助于抵消血栓形成的影响。我们认为,平衡麻醉和持续的广泛的术中和术后监测也对死亡率和发病率产生了积极影响。将镇痛护理延长至少72小时并保证不间断的喂养可能有助于减少其他并发症,如胃肠道应激性溃疡。

几项研究表明,随着时间的推移,恶化的动脉瘤中动脉瘤大小的增加更强729。在我们的系列中,这些发现无法得到证实。对照组显示动脉瘤随时间推移显著增长。然而,与对照组相比,修饰组的p值显示出显着增长模式的趋势(p = 0.054)。28天后弹性蛋白酶修饰组体积相等的这种微不足道的生长速率至少可以部分解释为较大的初始动脉瘤体积。此外,小动物数量以及仅28天的随访是仅在两例中观察到广泛动脉瘤生长的潜在原因。此外,外科医生14,1541涉及学习曲线。

在血管内线圈治疗方面,对照和弹性蛋白酶修饰的分岔袋的直接比较仍然缺失。对于静脉袋,已经报告了35%和65%的初始完全和不完全闭塞率27。经过 3\u20126 个月的随访,15%27 的完全闭塞可能被客观化。关于所提出的这种新动物模型的出色通畅率,动脉退行性袋可以在生理和病理生理学条件下的前瞻性环境中通过线圈栓塞,支架治疗或支架辅助线圈栓塞进一步评估。

弹性蛋白酶修饰的动脉袋很难缝制,因为袋子的壁非常粘稠;袋子本身的反应非常血栓形成,因此与对照组相比,管腔不像对照组那样自然打开。缝合袋时,请确保不会在周长血管上施加张力,因为如上所述,弹性蛋白酶在损害母体动脉的血管结构方面表现积极。

最后,如果该模型在一段时间内实施,则通过持续执行高度显微外科手术,为神经外科住院医师适应显微外科技能提供了巨大价值42。经过初步培训后,这些技术可以很容易地应用并以安全和标准化的方式进行。

这项研究的局限性在于可行性研究的动物数量少,以及缝合材料和改良动脉袋的潜在产栓特性。此外,该模型描绘了一个颅外动脉瘤模型,该模型不能设置为相当于颅内设置。此外,这种模式需要许多资源(兽医,手术助理,护士和麻醉机)。该方法的一个优点是在一次手术中植入弹性蛋白酶修饰的动脉袋以及未修饰的囊。因此,严格遵守有关动物福利的3R原则。

总之,我们提出了一种新颖,可重复和标准化的方案,以创建模仿不同壁条件的自体动脉袋分叉动脉瘤。鉴于非改性和改性袋组动脉瘤随时间推移生长的出色长期通畅性和特性,该模型可作为进一步临床前评估新型血管内装置的重要工具。可以肯定的是,这些结果必须在更大的系列中得到确认。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

这项工作得到了瑞士阿劳Kantonsspital Aarau研究委员会和瑞士国家科学基金会SNF(310030_182450)的研究基金的支持。作者对所提交研究的设计和进行负全部责任,并声明没有竞争利益。

Acknowledgments

作者感谢Olgica Beslac和Kay Nettelbeck在围手术期的出色支持和技术援助,以及Alessandra Bergadano,DVM,PhD,PhD对长期动物健康的专门监督。

Materials

Name Company Catalog Number Comments
3-0 resorbable suture Ethicon Inc., USA VCP428G
4-0 non-absorbable suture B. Braun, Germany G0762563
6-0 non-absorbable suture B. Braun, Germany C0766070
9-0 non-absorbable suture B. Braun, Germany G1111140
Adrenaline Amino AG 1445419 any generic
Amiodarone Helvepharm AG 5078567 any generic
Anesthesia machine Dräger any other
Aspirin Sanofi-Aventis (Suisse) SA 622693 any generic
Atropine Labatec Pharma SA 6577083 any generic
Bandpass filter blue Thorlabs FD1B any other
Bandpass filter green Thorlabs FGV9 any other
Bipolar forceps any other
Bicycle spotlight any other
Biemer vessel clip (2 x) B. Braun Medical AG, Aesculap, Switzerland FD560R temporary
Bispectral index (neonatal) any other
Blood pressure cuff (neonatal) any other
Clamoxyl GlaxoSmithKline AG 758808 any generic
Dexmedetomidine Ever Pharma 136740-1 any generic
Electrocardiogram electrodes any other
Elastase Sigma Aldrich 45125 any generic
Ephedrine Amino AG 1435734 any generic
Esmolol OrPha Swiss GmbH 3284044 any generic
Fentanyl (intravenous use) Janssen-Cilag AG 98683 any generic
Fentanyl (transdermal) Mepha Pharma AG 4008286 any generic
Fluoresceine Curatis AG 5030376 any generic
Fragmin Pfizer PFE Switzerland GmbH 1906725 any generic
Glyco any generic
Heating pad any other
Isotonic sodium chloride solution (0.9%) Fresenius KABI 336769 any generic
Ketamine Pfizer 342261 any generic
Laboratory shaker Stuart SRT6 any other
Lidocaine Streuli Pharma AG 747466 any generic
Longuettes any other
Metacam Boehringer Ingelheim P7626406 any generic
Methadone Streuli Pharma AG 1084546 any generic
Microtubes any other
Micro needle holder any other
Midazolam Accord Healthcare AG 7752484 any generic
Needle holder any other
O2-Face mask any other
Operation microscope Wild Heerbrugg any other
Papaverine Bichsel any generic
Prilocaine-lidocaine creme Emla any generic
Propofol B. Braun Medical AG, Switzerland any generic
Pulse oxymeter any generic
Rectal temperature probe (neonatal) any other
Ropivacaine Aspen Pharma Schweiz GmbH 1882249 any generic
Scalpell Swann-Morton 210 any other
Small animal shaver any other
Smartphone any other
Soft tissue forceps any other
Soft tissue spreader any other
Stainless steel sponge bowls any other
Sterile micro swabs any other
Stethoscope any other
Straight and curved micro-forceps any other
Straight and curved micro-scissors any other
Straight and curved forceps any other
Surgery drape any other
Surgical scissors any other
Syringes 1 ml, 2ml and 5 ml any other
Tris-Buffer Sigma Aldrich 93302 any generic
Vascular clip applicator B. Braun, Germany FT495T
Vein and arterial catheter 22 G any generic
Vitarubin Streuli Pharma AG 6847559 any generic
Yasargil titan standard clip (2 x) B. Braun Medical AG, Aesculap, Switzerland FT242T temporary

DOWNLOAD MATERIALS LIST

References

  1. Wanderer, S., Mrosek, J., Gessler, F., Seifert, V., Konczalla, J. Vasomodulatory effects of the angiotensin II type 1 receptor antagonist losartan on experimentally induced cerebral vasospasm after subarachnoid haemorrhage. Acta Neurochirurgica (Wien). 160 (2), 277-284 (2018).
  2. Vatter, H., et al. Effect of delayed cerebral vasospasm on cerebrovascular endothelin A receptor expression and function. Journal of Neurosurgery. 107 (1), 121-127 (2007).
  3. Andereggen, L., et al. The role of microclot formation in an acute subarachnoid hemorrhage model in the rabbit. Biomed Research International. , 161702 (2014).
  4. Eriksen, N., et al. Early focal brain injury after subarachnoid hemorrhage correlates with spreading depolarizations. Neurology. 92 (4), 326-341 (2019).
  5. Thompson, J. W., et al. In vivo cerebral aneurysm models. Neurosurgical Focus. 47 (1), 20 (2019).
  6. Bouzeghrane, F., Naggara, O., Kallmes, D. F., Berenstein, A., Raymond, J. International Consortium of Neuroendovascular C. In vivo experimental intracranial aneurysm models: a systematic review. American Journal of Neuroradiology. 31 (3), 418-423 (2010).
  7. Marbacher, S., et al. Loss of mural cells leads to wall degeneration, aneurysm growth, and eventual rupture in a rat aneurysm model. Stroke. 45 (1), 248-254 (2014).
  8. Marbacher, S., et al. Intraluminal cell transplantation prevents growth and rupture in a model of rupture-prone saccular aneurysms. Stroke. 45 (12), 3684-3690 (2014).
  9. Marbacher, S., Niemela, M., Hernesniemi, J., Frosen, J. Recurrence of endovascularly and microsurgically treated intracranial aneurysms-review of the putative role of aneurysm wall biology. Neurosurgical Review. 42 (1), 49-58 (2019).
  10. Marbacher, S., et al. Complex bilobular, bisaccular, and broad-neck microsurgical aneurysm formation in the rabbit bifurcation model for the study of upcoming endovascular techniques. American Journal of Neuroradiology. 32 (4), 772-777 (2011).
  11. Marbacher, S., et al. Long-term patency of complex bilobular, bisaccular, and broad-neck aneurysms in the rabbit microsurgical venous pouch bifurcation model. Neurological Research. 34 (6), 538-546 (2012).
  12. Sherif, C., Marbacher, S., Erhardt, S., Fandino, J. Improved microsurgical creation of venous pouch arterial bifurcation aneurysms in rabbits. American Journal of Neuroradiology. 32 (1), 165-169 (2011).
  13. Sherif, C., et al. Microsurgical venous pouch arterial-bifurcation aneurysms in the rabbit model: technical aspects. Journal of Visualized Experiments. 51, 2718 (2011).
  14. Brinjikji, W., Ding, Y. H., Kallmes, D. F., Kadirvel, R. From bench to bedside: utility of the rabbit elastase aneurysm model in preclinical studies of intracranial aneurysm treatment. Journal of Neurointerventional Surgery. 8 (5), 521-525 (2016).
  15. Miskolczi, L., Guterman, L. R., Flaherty, J. D., Hopkins, L. N. Saccular aneurysm induction by elastase digestion of the arterial wall: a new animal model. Neurosurgery. 43 (3), 595-600 (1998).
  16. Lewis, D. A., et al. Morbidity and mortality associated with creation of elastase-induced saccular aneurysms in a rabbit model. American Journal of Neuroradiology. 30 (1), 91-94 (2009).
  17. Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M., Altman, D. G. Group NCRRGW. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Journal of Cerebral Blood Flow and Metabolism. 31 (4), 991-993 (2011).
  18. Tornqvist, E., Annas, A., Granath, B., Jalkesten, E., Cotgreave, I., Oberg, M. Strategic focus on 3R principles reveals major reductions in the use of animals in pharmaceutical toxicity testing. PLoS One. 9 (7), (2019).
  19. Irlbeck, T., Zwissler, B., Bauer, A. ASA classification: Transition in the course of time and depiction in the literature]. Der Anaesthesist. 66 (1), 5-10 (2017).
  20. Grüter, B. E., et al. Fluorescence Video Angiography for Evaluation of Dynamic Perfusion Status in an Aneurysm Preclinical Experimental Setting. Oper Neurosurg (Hagerstown). 17 (4), 432-438 (2019).
  21. Grüter, B. E., et al. Testing bioresorbable stent feasibility in a rat aneurysm model. Journal of Neurointerventional Surgery. 11 (10), 1050-1054 (2019).
  22. Strange, F., et al. Fluorescence Angiography for Evaluation of Aneurysm Perfusion and Parent Artery Patency in Rat and Rabbit Aneurysm Models. Journal of Visualized Experiments. (149), e59782 (2019).
  23. Weaver, L. A., Blaze, C. A., Linder, D. E., Andrutis, K. A., Karas, A. Z. A model for clinical evaluation of perioperative analgesia in rabbits (Oryctolagus cuniculus). Journal of the American Association of Laboratory Animal Science. 49 (6), 845-851 (2010).
  24. ACLAM Task Force Members. Public statement: guidelines for the assessment and management of pain in rodents and rabbits. Journal of the American Association of Laboratory Animal Science. 46 (2), 97-108 (2007).
  25. Forrest, M. D., O'Reilly, G. V. Production of experimental aneurysms at a surgically created arterial bifurcation. American Journal of Neuroradiology. 10 (2), 400-402 (1989).
  26. Kwan, E. S., Heilman, C. B., Roth, P. A. Endovascular packing of carotid bifurcation aneurysm with polyester fiber-coated platinum coils in a rabbit model. American Journal of Neuroradiology. 14 (2), 323-333 (1993).
  27. Spetzger, U., Reul, J., Weis, J., Bertalanffy, H., Thron, A., Gilsbach, J. M. Microsurgically produced bifurcation aneurysms in a rabbit model for endovascular coil embolization. Journal of Neurosurgery. 85 (3), 488-495 (1996).
  28. Bavinzski, G., et al. Experimental bifurcation aneurysm: a model for in vivo evaluation of endovascular techniques. Minimal Invasive Neurosurgery. 41 (3), 129-132 (1998).
  29. Marbacher, S., Marjamaa, J., Abdelhameed, E., Hernesniemi, J., Niemela, M., Frosen, J. The Helsinki rat microsurgical sidewall aneurysm model. Journal of Viusalized Experiments. (92), e51071 (2014).
  30. Alfano, J. M., et al. Intracranial aneurysms occur more frequently at bifurcation sites that typically experience higher hemodynamic stresses. Neurosurgery. 73 (3), 497-505 (2013).
  31. Sakamoto, S., et al. Characteristics of aneurysms of the internal carotid artery bifurcation. Acta Neurochirurgica (Wien). 148 (2), 139-143 (2006).
  32. Dai, D., et al. Histopathologic and immunohistochemical comparison of human, rabbit, and swine aneurysms embolized with platinum coils. American Journal of Neuroradiology. 26 (10), 2560-2568 (2005).
  33. Shin, Y. S., Niimi, Y., Yoshino, Y., Song, J. K., Silane, M. Berenstein A. Creation of four experimental aneurysms with different hemodynamics in one dog. American Journal of Neuroradiology. 26 (7), 1764-1767 (2005).
  34. Abruzzo, T., Shengelaia, G. G., Dawson, R. C., Owens, D. S., Cawley, C. M., Gravanis, M. B. Histologic and morphologic comparison of experimental aneurysms with human intracranial aneurysms. American Journal of Neuroradiology. 19 (7), 1309-1314 (1998).
  35. Spetzger, U., Reul, J., Weis, J., Bertalanffy, H., Gilsbach, J. M. Endovascular coil embolization of microsurgically produced experimental bifurcation aneurysms in rabbits. Surgical Neurology. 49 (5), 491-494 (1998).
  36. Reul, J., Weis, J., Spetzger, U., Konert, T., Fricke, C., Thron, A. Long-term angiographic and histopathologic findings in experimental aneurysms of the carotid bifurcation embolized with platinum and tungsten coils. American Journal of Neuroradiology. 18 (1), 35-42 (1997).
  37. Marbacher, S., Strange, F., Frosen, J., Fandino, J. Preclinical extracranial aneurysm models for the study and treatment of brain aneurysms: A systematic review. Journal of Cerebral Blood Flow and Metabolism. , (2020).
  38. Strange, F., Gruter, B. E., Fandino, J., Marbacher, S. Preclinical Intracranial Aneurysm Models: A Systematic Review. Brain Sciences. 10 (3), 134 (2020).
  39. Marbacher, S., Wanderer, S., Strange, F., Gruter, B. E., Fandino, J. Saccular Aneurysm Models Featuring Growth and Rupture: A Systematic Review. Brain Sciences. 10 (2), 101 (2020).
  40. Coluccia, D., et al. A microsurgical bifurcation rabbit model to investigate the effect of high-intensity focused ultrasound on aneurysms: a technical note. Journal of Therapeutic Ultrasound. 2, 21 (2014).
  41. Hoh, B. L., Rabinov, J. D., Pryor, J. C., Ogilvy, C. S. A modified technique for using elastase to create saccular aneurysms in animals that histologically and hemodynamically resemble aneurysms in human. Acta Neurochirurgica (Wien). 146 (7), 705-711 (2004).
  42. Morosanu, C. O., Nicolae, L., Moldovan, R., Farcasanu, A. S., Filip, G. A., Florian, I. S. Neurosurgical Cadaveric and In Vivo Large Animal Training Models for Cranial and Spinal Approaches and Techniques - Systematic Review of Current Literature. Neurologia i neurochirurgia polska. 53 (1), 8-17 (2019).

Tags

神经科学,第159期,血管内治疗,颅内动脉瘤,分叉动脉瘤,动物模型,兔子,神经生物学
兔动脉袋显微外科分叉动脉瘤模型
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Wanderer, S., Waltenspuel, C.,More

Wanderer, S., Waltenspuel, C., Grüter, B. E., Strange, F., Sivanrupan, S., Remonda, L., Widmer, H. R., Casoni, D., Andereggen, L., Fandino, J., Marbacher, S. Arterial Pouch Microsurgical Bifurcation Aneurysm Model in the Rabbit. J. Vis. Exp. (159), e61157, doi:10.3791/61157 (2020).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter