Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biology

检测植物宿主中叶蝉载体的病毒和唾液蛋白

Published: September 14, 2021 doi: 10.3791/63020

Summary

该协议演示了如何使用植物宿主来检测叶蝉的唾液蛋白和叶蝉载体释放的植物病毒蛋白。

Abstract

昆虫媒介水平传播许多具有农业重要性的植物病毒。超过一半的植物病毒是由具有刺穿吸口器的半翅目昆虫传播的。在病毒传播过程中,昆虫唾液桥接病毒载体宿主,因为唾液载体病毒和昆虫蛋白触发或抑制植物从昆虫到植物宿主的免疫反应。唾液蛋白的鉴定和功能分析正在成为虫媒病毒-宿主相互作用研究领域的新热点。该协议提供了一个使用植物宿主检测叶蝉唾液中蛋白质的系统。感染水稻矮病毒(RDV)的叶蝉载体Nephotettix cincticeps就是一个例子。在以辛克二头肌猪笼草为食的水稻植株中,可以同时检测到由辛克二头肌奈瑟菌唾液载体的RDV的卵黄原蛋白和主要外衣壳蛋白P8。该方法适用于检测昆虫摄食后暂时滞留在植物宿主中的唾液蛋白。相信这种检测系统将有利于半翅目-病毒-植物或半翅目-植物相互作用的研究。

Introduction

虫媒病毒的媒介-宿主传播方式是一个基本问题,处于生物科学的前沿。许多具有农业重要性的植物病毒通过昆虫媒介横向传播1。超过一半的植物病毒是由半翅目昆虫传播的,包括蚜虫、粉虱、叶蝉、飞虱和蓟马。这些昆虫具有独特的特征,使它们能够有效地传播植物病毒1。它们拥有刺吸口器,以韧皮部和木质部的汁液为食,分泌唾液1234随着技术的发展和改进,唾液成分的鉴定和功能分析正在成为深入研究的新焦点。唾液中已知的唾液蛋白包括许多酶,例如果胶酯酶、纤维素酶、过氧化物酶、碱性磷酸酶、多酚氧化酶和蔗糖酶等5678910,111213.唾液中的蛋白质还包括触发宿主防御反应的诱发子,从而改变昆虫的性能,以及抑制宿主防御的效应子,其增强昆虫适应性和诱导宿主病理反应的成分14,15,1617因此,唾液蛋白是昆虫与宿主之间交流的重要材料。在病毒传播过程中,刺吸病毒昆虫唾液腺分泌的唾液也含有病毒蛋白。病毒成分利用唾液的流动将它们从昆虫释放到植物宿主。因此,昆虫唾液弥合了病毒-载体-宿主的三营养相互作用。研究含病毒昆虫分泌的唾液蛋白的生物学功能有助于了解病毒-载体-宿主的关系。

对于动物病毒,据报道,蚊子的唾液介导西尼罗河病毒(WNV)和登革热病毒(DENV)的传播和致病性。唾液蛋白AaSG34通过激活自噬促进登革热-2病毒复制和传播,而唾液蛋白AaVA-1通过激活自噬来促进登革热和寨卡病毒(ZIKV)传播1819。蚊子的唾液蛋白D7可以通过与DENV病毒粒子和重组DENV包膜蛋白20的直接相互作用,在体外和体内抑制DENV感染。在植物病毒中,白栗病毒番茄黄叶卷曲病毒(TYLCV)诱导粉虱唾液蛋白Bsp9,抑制植物宿主WRKY33介导的免疫力,增加粉虱的偏好和性能,最终增加病毒的传播21。由于对昆虫唾液蛋白在植物宿主中的作用的研究落后于动物宿主,因此迫切需要一个稳定可靠的系统来检测植物宿主中的唾液蛋白。

被称为水稻矮病毒(RDV)的植物病毒由叶蝉Nephotettix cincticeps(半翅目:Cicadellidae)高效且持续繁殖2223传播。RDV首先被报道通过昆虫媒介传播,并在亚洲引起严重的水稻病害2425。病毒粒子为二十面体和双层球形,外层含有P8外衣壳蛋白22RDV在蝴蝶奈瑟蝇中的循环传播周期为14天2627282930当RDV到达唾液腺时,病毒粒子通过胞吐样机制释放到唾液腺中储存唾液的腔中23。卵黄原蛋白(Vg)是雌性昆虫卵母细胞发育所必需的卵黄蛋白前体313233。大多数昆虫物种至少有一个6-7 kb的Vg转录本,其编码约220 kDa的前体蛋白。Vg的蛋白质前体在进入卵巢之前通常可以裂解成大的(140至190 kDa)和小的(<50 kDa)片段1819。先前的蛋白质组学分析显示,叶蝉Recilia dorsalis分泌的唾液中存在来自Vg的肽,尽管它们的功能尚不清楚(未发表的数据)。新报道,飞虱口服分泌的Vg起到效应作用,破坏植物的防御能力34。目前尚不清楚猪笼草的Vg是否也可以随唾液流释放到植物宿主,然后在植物中发挥作用干扰植物防御。为了解决猪笼草是否利用唾液蛋白(如Vg)来抑制或激活植物防御的问题,第一步是识别在摄食过程中释放到植物中的蛋白质。了解鉴定植物中存在的唾液蛋白的方法对于解释唾液蛋白的功能以及半翅目与植物之间的相互作用至关重要。

在这里介绍的协议中,以N . cincticeps 为例,提供一种方法来检查通过昆虫喂养引入的植物宿主中唾液蛋白的存在。该方案主要详细说明了唾液蛋白的收集和检测,有助于对大多数半翅目动物的进一步研究。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

非病毒性成虫叶蝉在中国福建农林大学媒介传播病毒研究中心繁殖。

1. 非病毒昆虫饲养

  1. 将成虫饲养在40厘米x 35厘米x 20厘米(长x宽x高)的立方体笼中。保持笼子的一侧盖上防虫网,以便通风。
    1. 将带有叶蝉的笼子保存在包含内置湿度控制器的培养箱中,在26°C下,相对湿度为60-75%,光周期为16小时光照和8小时黑暗。
  2. 使用吸气器轻轻地将所有成虫从笼子中转移到每周装有新鲜水稻幼苗的新笼子中。
    1. 让200多只成虫在水稻中交配产卵。
    2. 保留老稻苗,让若虫出苗。将这些新的非病毒若虫饲养到2龄期。

2. 病毒获取和病毒性昆虫的收集

  1. 小心地将2龄非病毒若虫转移到玻璃培养管(直径2.5厘米,高15厘米)中1-2小时,以便使用吸气器饥饿。
    1. 将若虫释放到笼子中,笼子里装有在盆中生长的感染RDV的水稻植物。
    2. 让若虫以受感染的水稻植物为食 2 天。
      注意:小心地给水稻植物浇水,避免冲走若虫。2龄若虫长约1.6-2毫米。
  2. 小心地将这些若虫转移到包含新鲜无病毒水稻幼苗的新笼子中,相对湿度为60-75%,光周期为16小时光照和8小时黑暗。让若虫以受感染的水稻植物为食12天,以完成RDV的循环传播期。

3. 使用饲养笼收集唾液蛋白

  1. 准备五个小管状喂食笼(直径2.5厘米,高4厘米),其中一端覆盖有防虫网。
  2. 在每个喂食笼中限制15-20个叶蝉,然后用薄泡沫垫覆盖笼子的另一端。
    1. 用胶带将一棵稻苗(5-6厘米高)固定在笼子末端和泡沫垫之间。确保饲养笼中的叶蝉可以以暴露在笼内的水稻幼苗为食。
  3. 将幼苗根部浸入水中,使水稻植物保持活力。让叶蝉以它们为食 2 天。
  4. 从饲养笼中取出叶蝉,收集它们喂养的水稻幼苗。将幼苗的部分切出网箱外,恢复幼苗的摄食区。
    注意:如果不立即用于检测,该样品最多可以在-80°C下储存3个月。

4. 试剂制备

  1. 将 15.1 g Tris-碱、94 g 甘氨酸和 5 g SDS 溶解在 1 L 无菌水中,制备 5xTris-甘氨酸缓冲液。用800 mL无菌水稀释200 mL 5xTris-甘氨酸缓冲液,制备1xTris-甘氨酸缓冲液(缓冲液组成参见 表1 )。
  2. 将 80 g NaCl、30 g Tris-碱和 2 g KCl 溶解在 1 L 无菌水中,制备 10xTris 缓冲盐水 (TBS) 缓冲液。将溶液在121°C高压灭菌15分钟。
  3. 将 8 g SDS、4 mL 巯基乙醇、0.02 g 溴酚蓝和 40 mL 甘油溶解在 40 mL 的 0.1 M Tris-HCl (pH 6.8) 中,制备 4x 蛋白质样品缓冲液。
  4. 将 800 mL Tris-甘氨酸缓冲液与 200 mL 甲醇混合以制备转印缓冲液。
  5. 加入 100 mL 10xTBS 溶液和 3 mL 吐温 20 至 900 mL 无菌水,用吐温 20 (TBST) 溶液制备 TBS 缓冲液。

5. 蛋白质印迹检测唾液和病毒蛋白

  1. 用液氮研磨0.1克大米样品,直到组织变成粉末。向样品中加入 200 μL 4x 蛋白质样品缓冲液并煮沸 10 分钟。在室温下以12,000× g 离心样品10分钟。
    1. 取出上清液并将其放入新小瓶中。将 10 μL 样品加载到 SDS-PAGE 凝胶中,并在 150 V 的 Tris-甘氨酸缓冲液中运行 45-60 分钟。
      注意:离心后的残留物可以丢弃。
  2. 将0.45μm硝酸纤维素膜和其他三明治用品放入转印缓冲液中30分钟。
    注意:此步骤可以在凝胶完成电泳之前完成。
  3. 夹住凝胶,并在转印缓冲液中以100V转印90-120分钟。
  4. 取膜并将其置于TBST溶液中的7%脱脂奶粉封闭溶液中20分钟。将针对RDV P8或Vg的特异性抗体添加到TBST中7%脱脂奶粉溶液中。与抗体一起孵育以染色膜2小时或过夜。
  5. 用TBST溶液洗涤膜三次,每次洗涤5分钟。
  6. 将山羊抗兔IgG作为二抗添加到7%脱脂奶粉中。在室温下与抗体孵育60-90分钟。
  7. 用TBST溶液洗涤膜三次,每次5分钟。
  8. 使用ECL蛋白质免疫试剂盒进行化学发光方法。试剂盒中的混合检测试剂 1 和 2 在试管中的比例为 1:1。将混合试剂放在膜上,孵育印迹5分钟。
  9. 排出多余的试剂并拍摄化学发光图像的比色照片。将它们结合起来,可以看到带有蛋白质条带的梯子。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

图1说明了该协议中的所有步骤:昆虫饲养,病毒获取,通过水稻喂养收集唾液蛋白以及蛋白质印迹。蛋白质印迹结果显示,在用Vg抗体孵育的膜上的喂养水稻和昆虫唾液腺的样品中观察到约220 kDa的特异性和预期条带。相比之下,在非饲料大米样品中未观察到条带。图2中的结果表明,Vg作为唾液蛋白释放到植物宿主中。在与RDV P8抗体一起孵育的膜上,在接受喂养的水稻样品和病毒昆虫尸体的身体中也观察到约46 kDa的特定和预期条带。相比之下,在非饲料水稻样品和非病毒性叶蝉体中未观察到条带,如图3所示。这一结果证明,在饲喂植物中也可以检测到病毒蛋白。

Figure 1
图 1:检测唾液蛋白的步骤概述。 这些步骤包括昆虫饲养、病毒采集、通过植物喂养 收集 唾液蛋白和蛋白质印迹。 请点击此处查看此图的大图。

Figure 2
图2:植物和昆虫样品中Vg的蛋白质印迹测定。 1巷,非饲料植物;2巷,蝉蝉食草;车道3,病毒性叶蝉唾液腺;车道 M,标记。 请点击此处查看此图的大图。

Figure 3
图 3:植物和昆虫样品中 P8 的蛋白质印迹测定。 1巷,非饲料植物;2巷,蝉蝉食草;车道3,蝉蝉体;车道4,无病毒叶蝉体;M,标记。 请点击此处查看此图的大图。

缓冲区 组成 评论/说明
5x 三甘氨酸缓冲液 15.1克三基底
94克甘氨酸
5 g SDS 在 1 L 无菌水中
储备液
1x 三甘氨酸缓冲液 200 mL 5x Tris-甘氨酸缓冲液
800 mL 无菌水
工作解决方案,用于 SDS-PAGE
10x 三缓冲盐水 (TBS) 缓冲液 80克氯化钠
30克三糖基料
2克氯化钾
在 1 L 无菌水中
储备液
带吐温 20 (TBST) 解决方案的 TBS 100 mL 10x TBS 溶液
3 mL 吐温 20
900 mL 无菌水
工作解决方案
4x 蛋白质样品缓冲液 8 克安全数据表
4 mL β-巯基乙醇
0.02克溴酚蓝
40毫升甘油
在 40 mL 0.1 M Tris-HCl (pH 6.8) 中
用于蛋白质提取
转印缓冲液 800 mL 三甘氨酸缓冲液
200毫升甲醇
用于蛋白质转移

表1:研究中使用的缓冲液、溶液和试剂。 列出了缓冲液和溶液的组成及其用法。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

刺吸昆虫唾液腺直接分泌的唾液起着举足轻重的作用,因为它将宿主组织和载体的跨王国生物因子预先消化和解毒到宿主134中。跨王国的生物因子,包括诱发子、效应子和小RNA,对于昆虫-宿主通讯至关重要141516。因此,揭示唾液成分的更多种类和功能将促进对昆虫与宿主之间关系的理解。本文提供了植物宿主中唾液蛋白的检测系统,可以进一步研究植物宿主中唾液蛋白的功能。

该协议提供了通过收集饲料植物来检测具有刺穿吸口器的叶蝉的唾液蛋白的技术。应注意一些值得注意的要点,以获得最佳和可靠的结果。(1)受感染水稻植株的病毒载量至关重要。水稻植物中的病毒滴度直接影响昆虫的获取。当昆虫群落高度病毒性高时, 体外唾 液中收集病毒蛋白的概率会增加。因此,从唾液释放到植物宿主的病毒蛋白将更容易检测。建议选择表现出明显症状的受感染植物作为病毒的来源。(2)检测定时。据信,一些唾液蛋白在植物宿主中是短暂的,因为它们被植物宿主降解或在植物中稀释。建议在 2 天饲喂后立即检测饲喂植物。还假设,对于植物中的某些特定唾液蛋白,更长的保留时间会更好。因此,一些唾液蛋白的检测时间可以在进一步的研究中确定。(3)确保有足够的重复。存活的昆虫数量会减少,因为饲养笼中的受限昆虫的活动和进食能力有限。使用足够的重复将有助于富集唾液蛋白。三到五个重复通常就足够了。如果只有一个复制品,最好限制15-20个叶蝉以一棵水稻幼苗为食。

这些具有代表性的结果表明,病毒叶蝉的摄食植物中存在病毒蛋白P8。据透露,与唾液流混合的病毒从唾液腺释放出来。然后它从昆虫释放到植物宿主,最终完成病毒水平传播。然而,Vg在昆虫摄食过程中是否起诱发剂或效应物的作用,以及它是否触发或抑制植物宿主的免疫反应,目前尚不清楚。以前,通过膜喂养收集超过10,000个背侧R. salis的唾液,并使用LC-MS / MS(未发表的数据)进行分析。唾液中Vg的存在得到了验证,尽管其功能尚不清楚。在这里,已经证明Vg也存在于猪笼的唾液中,甚至被释放到植物中。结合对飞虱16的研究,推测半翅目唾液中Vg的存在是普遍存在的。一项新发现报告说,飞虱唾液的Vg是破坏植物防御系统的效应器34。需要更多的研究来解决大多数半翅目唾液中的Vg是否具有效应作用。据信,该协议提供了一种稳定可靠的方法来检查植物中叶蝉分泌的唾液蛋白的存在。该协议有望适用于检测大多数半翅目动物的唾液蛋白。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者没有什么可透露的。

Acknowledgments

这项工作得到了中国国家自然科学基金(31772124和31972239)和福建农林大学(KSYLX014)的资助。

Materials

Name Company Catalog Number Comments
Reagents
Tris base Roche D609K69032 For 5×Tris-glycine buffer and 10×TBS buffer preparation
glycine Sigma-Aldrich WXBD0677V For 5×Tris-glycine buffer preparation
SDS Sigma-Aldrich SLCB4394 For 5×Tris-glycine buffer preparation
NaCl Sinopharm Chemical Reagent Co., Ltd 10019318 For 10×TBS buffer preparation
KCl Sinopharm Chemical Reagent Co., Ltd 10016318 For 10×TBS buffer preparation
ß-mercaptoethanol Xiya Reagent B14492 For 4× protein sample buffer preparation
bromophenol blue Sigma-Aldrich SHBL3668 For 4× protein sample buffer preparation
glycerol Sinopharm Chemical Reagent Co., Ltd 10010618 For 4× protein sample buffer preparation
methanol Sinopharm Chemical Reagent Co., Ltd 10014118 For transfer buffer preparation
Tween 20 Coolaber SCIENCE&TeCHNoLoGY CT30111220 For TBST preparation
non-fat dry milk Becton.Dickinso and company 252038 For membrane blocking, antibodies dilution
goat anti-rabbit IgG Sangon Biotech D110058-0001 Recognization of the primary andtibody
ECL Western kit ThermoFisher Scientific 32209 Chemiluminescent substrate
nitrocellulose membrane Pall Corporation 25312915 For proteins transfer
Buffers and Solutions
Buffer Composition Comments/Description
 5×Tris-glycine buffer 15.1 g Tris base
94 g glycine
 5 g SDS in 1 L sterile water
 Stock solution
1×Tris-glycine buffer 200 mL of 5×Tris-glycine buffer
800 mL sterile water
Work solution, for SDS-PAGE
10×Tris-buffered saline (TBS) buffer 80 g NaCl
30 g Tris base
2 g KCl
in 1 L sterile water
Stock solution
TBS with Tween 20 (TBST) solution 100 mL 10×TBS solution
3 mL Tween 20
900 mL sterile water
Work solution
4× protein sample buffer 8 g SDS
4 mL ß-mercaptoethanol
0.02 g bromophenol blue
40 mL glycerol
in 40 mL 0.1 M Tris-HCl (pH 6.8)
For protein extraction
Transfer buffer 800 mL Tris-glycine buffer
200 mL methanol
For protein transfer
Instruments
Bromophenol blue Sigma-Aldrich SHBL3668 For 4x protein sample buffer preparation
Constant temperature incubator Ningbo Saifu Experimental Instrument Co., Ltd. PRX-1200B For rearing leafhoppers
Electrophoresis Tanon Science & Technology Co.,Ltd. Tanon EP300 For SDS-PAGE
Electrophoretic transfer core module BIO-RAD 1703935 For SDS-PAGE
glycerol Sinopharm Chemical Reagent Co., Ltd 10010618 For 4x protein sample buffer preparation
glycine Sigma-Aldrich WXBD0677V For 5x Tris-glycine buffer preparation
goat anti-rabbit IgG Sangon Biotech D110058-0001 Recognization of the primary andtibody
High-pass tissue grinding instrument Shanghai Jingxin Industrial Development Co., Ltd. JXFSIPRP-24 For grinding plant tissues
KCl Sinopharm Chemical Reagent Co., Ltd 10016318 For 10x TBS buffer preparation
methanol Sinopharm Chemical Reagent Co., Ltd 10014118 For transfer buffer preparation
Mini wet heat transfer trough BIO-RAD 1703930 For SDS-PAGE
NaCl Sinopharm Chemical Reagent Co., Ltd 10019318 For 10x TBS buffer preparation
nitrocellulose membrane Pall Corporation 25312915 For proteins transfer
non-fat dry milk Becton.Dickinso and company 252038 For membrane blocking, antibodies dilution
Pierce ECL Western kit ThermoFisher Scientific 32209 Chemiluminescent substrate
Protein color instrument GE Healthcare bio-sciences AB Amersham lmager 600 For detecting proteins
SDS Sigma-Aldrich SLCB4394 For 5x Tris-glycine buffer preparation
Tris base Roche D609K69032 For 5x Tris-glycine buffer and 10×TBS buffer preparation
Tween 20 Coolaber SCIENCE&TeCHNoLoGY CT30111220 For TBST preparation
Vertical plate electrophoresis tank BIO-RAD 1658001 For SDS-PAGE
Water bath Shanghai Jinghong Experimental equipment Co., Ltd. XMTD-8222 For boil the protein samples
β-mercaptoethanol Xiya Reagent B14492 For 4x protein sample buffer preparation

DOWNLOAD MATERIALS LIST

References

  1. Hogenhout, S. A., Ammar el, D., Whitfield, A. E., Redinbaugh, M. G. Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology. 46, 327-359 (2008).
  2. Cranston, P. S., Gullan, P. J. Phylogeny of insects. Encyclopedia of Insects. Resh, V. H., Carde, R. T. , Academic. Amsterdam. (2003).
  3. Ammar el, D., Tsai, C. W., Whitfield, A. E., Redinbaugh, M. G., Hogenhout, S. A. Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts. Annual Review of Entomology. 54, 447-468 (2009).
  4. Wei, T., Li, Y. Rice reoviruses in insect vectors. Annual Review of Phytopathology. 54, 99-120 (2016).
  5. Hattori, M., Konishi, H., Tamura, Y., Konno, K., Sogawa, K. Laccase-type phenoloxidase in salivary glands and watery saliva of the green rice leafhopper, Nephotettix cincticeps. Journal of Insect Physiology. 51 (12), 1359-1365 (2005).
  6. Ma, R., Reese, J. C., William, I. V., Bramel-Cox, P. Detection of pectinesterase and polygalacturonase from salivary secretions of living greenbugs, schizaphis graminum (Homoptera: aphididae). Journal of Insect Physiology. 36 (7), 507-512 (1990).
  7. Miles, P. W. Dynamic aspects of the chemical relation between the rose aphid and rose buds. Entomologia Experimentalis et Applicata. 37 (2), 129-135 (2011).
  8. Urbanska, A., Tjallingii, W. F., Dixon, A., Leszczynski, B. Phenol oxidising enzymes in the grain aphid's saliva. Entomologia Experimentalis et Applicata. 86 (2), 197-203 (1998).
  9. Miles, P. W., Peng, Z. Studies on the salivary physiology of plant bugs: detoxification of phytochemicals by the salivary peroxidase of aphids. Journal of Insect Physiology. 35 (11), 865-872 (1989).
  10. Will, T., van Bel, A. Physical and chemical interactions between aphids and plants. Journal of Experimental Botany. 57 (4), 729-737 (2006).
  11. Ma, R. Z., Reese, J. C., Black, W. C., Bramel-Cox, I. Chlorophyll loss in a greenbug-susceptible sorghum due to pectinases and pectin fragments. Journal of the Kansas Entomological Society. 71 (1), 51-60 (1998).
  12. Madhusudhan, V. V., Miles, P. W. Mobility of salivary components as a possible reason for differences in the responses of alfalfa to the spotted alfalfa aphid and pea aphid. Entomologia Experimentalis et Applicata. 86 (1), 25-39 (1998).
  13. Funk, C. J. Alkaline phosphatase activity in whitefly salivary glands and saliva. Archives of Insect Biochemistry & Physiology. 46 (4), 165-174 (2010).
  14. Hogenhout, S. A., Bos, J. I. Effector proteins that modulate plant-insect interactions. Current Opinion in Plant Biology. 14 (4), 422-428 (2011).
  15. Tomkins, M., Kliot, A., Maree, A. F., Hogenhout, S. A. A multi-layered mechanistic modelling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment. Current Opinion in Plant Biology. 44, 39-48 (2018).
  16. Huang, H. J., Lu, J. B., Li, Q., Bao, Y. Y., Zhang, C. X. Combined transcriptomic/proteomic analysis of salivary gland and secreted saliva in three planthopper species. Journal of Proteomics. , (2018).
  17. Hogenhout, S. A., Bos, J. I. Effector proteins that modulate plant--insect interactions. Current Opinion in Plant Biology. 14 (4), 422-428 (2011).
  18. Sun, P., et al. A mosquito salivary protein promotes flavivirus transmission by activation of autophagy. Nature Communications. 11 (1), 260 (2020).
  19. Sri-In, C., et al. A salivary protein of Aedes aegypti promotes dengue-2 virus replication and transmission. Insect Biochemistry and Molecular Biology. 111, 103181 (2019).
  20. Conway, M. J., et al. Aedes aegypti D7 saliva protein inhibits dengue virus infection. Plos Neglected Tropical Diseases. 10 (9), 0004941 (2016).
  21. Wang, N., et al. A whitefly effector Bsp9 targets host immunity regulator WRKY33 to promote performance. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 374 (1767), 20180313 (2019).
  22. Omura, T., Yan, J. Role of outer capsid proteins in transmission of phytoreovirus by insect vectors. Advances in Virus Research. 54, 15-43 (1999).
  23. Chen, Q., Liu, Y., Long, Z., Yang, H., Wei, T. Viral release threshold in the salivary gland of leafhopper vector mediates the intermittent transmission of rice dwarf virus. Frontiers in Microbiology. 12, 639445 (2021).
  24. Fukushi, T. Further studies on the dwarf disease of rice plant. Journal of the Faculty of Agriculture, Hokkaido Imperial University. 45 (3), 83-154 (1940).
  25. Miyazaki, N., et al. The functional organization of the internal components of rice dwarf virus. Journal of Biochemistry. 147, 843-850 (2010).
  26. Wei, T., Shimizu, T., Hagiwara, K., Kikuchi, A., Omura, T. Pns12 protein of rice dwarf virus is essential for formation of viroplasms and nucleation of viral-assembly complexes. Journal of General Virology. 87, 429-438 (2006).
  27. Chen, Q., Zhang, L., Chen, H., Xie, L., Wei, T. Nonstructural protein Pns4 of rice dwarf virus is essential for viral infection in its insect vector. Virology Journal. 12, 211 (2015).
  28. Chen, Q., et al. Nonstructural protein Pns12 of rice dwarf virus is a principal regulator for viral replication and infection in its insect vector. Virus Research. 210, 54-61 (2015).
  29. Chen, Q., Zhang, L., Zhang, Y., Mao, Q., Wei, T. Tubules of plant reoviruses exploit tropomodulin to regulate actin-based tubule motility in insect vector. Scientific Reports. 7, 38563 (2017).
  30. Wei, T., et al. The spread of Rice dwarf virus among cells of its insect vector exploits virus-induced tubular structures. Journal of Virology. 80 (17), 8593-8602 (2006).
  31. Mao, Q., et al. Insect bacterial symbiont-mediated vitellogenin uptake into oocytes to support egg development. mBio. 11 (6), 01142 (2020).
  32. Tufail, M., Takeda, M. Molecular characteristics of insect vitellogenins. Journal of Insect Physiology. 54 (12), 1447-1458 (2008).
  33. Sappington, T. W., Raikhel, A. S. Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochemistry and Molecular Biology. 28 (5-6), 277-300 (1998).
  34. Ji, R., et al. Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses. New Phytologist. , (2021).

Tags

本月在JoVE上,第175期,
检测植物宿主中叶蝉载体的病毒和唾液蛋白
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Wang, Y., Wang, X., Li, Z., Chen, Q. More

Wang, Y., Wang, X., Li, Z., Chen, Q. Detecting Virus and Salivary Proteins of a Leafhopper Vector in the Plant Host. J. Vis. Exp. (175), e63020, doi:10.3791/63020 (2021).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter