9.11: 检验关于 Mean: Known Population SD 的声明

Testing a Claim about Mean: Known Population SD
JoVE Core
Statistics
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Statistics
Testing a Claim about Mean: Known Population SD
Please note that all translations are automatically generated. Click here for the English version.

2,747 Views

01:11 min
April 30, 2023

Overview

此处解释了检验有关总体均值的假设的完整过程。

估计总体均值需要样本呈正态分布。数据应从随机选择的样本中收集,没有抽样偏差。样本量需要高于 30,最重要的是,总体标准差应该已经已知。

在大多数现实情况下,总体标准差通常是未知的,但在极少数情况下,当它已知时,可以使用正态性假设和 z 分布轻松检验有关总体平均值的声明。

假设(null 和 alternatives)应该清楚地陈述,然后用象征性的方式表达。原假设是一个中性陈述,表明总体均值等于某个确定值。备择假设可以基于假设中声明的平均值,但带有不等式符号。右尾、左尾或双尾假设检验可以根据备择假设中使用的符号来决定。

由于该方法需要正态分布,因此使用 z 分布 (z 表) 计算临界值。它是在所需的置信水平(最常见的是 95% 或 99%)下计算的。根据传统方法,将从样本数据计算的 z 统计量与 z 分数进行比较。P 值是根据 P 值方法根据数据计算的。这两种方法都有助于得出假设检验的结论。

Transcript

暴露于不同的光波长可能会影响斑马鱼的产卵率。

因此,进行了一项实验,将一组 50 条斑马鱼暴露在蓝光下,并将它们的产卵率与具有相同样本量的对照组进行比较。

为了检验该说法,我们从原假设开始,即暴露组和对照组的平均产卵率相同,以及蓝光增加平均产卵率的替代假设。

实验表明,暴露组的平均产卵率为每条鱼 550 条,而对照组为 250 条。

根据这些数据计算检验统计量需要事先了解总体标准差,即 146,从以前的研究中得知。

使用这些数据,我们可以计算 z 统计量,并观察到它落在显著性水平为 0.05 的关键区域。

此外,此 z 统计量的 P 值小于 0.05,得出结论,蓝光提高了斑马鱼的产卵率。

Key Terms and definitions​

  • Z Test - Method in statistics to test hypotheses about population means, often requiring known sd.
  • Standard Deviation (SD) - Measure of the amount of variation or dispersion of a set of values.
  • Population Mean - The sum of all the data in a population divided by the number of items in that population.
  • Hypothesis Testing - Procedure in statistics used to test claims or hypotheses about a parameter.
  • Known Population - A population where all characteristics, including the standard deviation, are known.

Learning Objectives

  • Define Z Test – Explain what it is and how it's used in hypothesis testing (e.g., Z Test).
  • Contrast Known vs Unknown Population SD – Explain key differences and impact on testing (e.g., using the Z Test).
  • Explore Hypothesis Testing – Describe process and significance in population studies (e.g., testing the claim about population mean).
  • Explain Standard Deviation – Demystify what it is and why it matters in the Z Test.
  • Apply in Context – Share practical examples of hypothesis testing and Z Tests.

Questions that this video will help you answer

  • What is the Z Test and how does it support hypothesis testing?
  • What is the significance of known population standards in Z Tests?
  • How is the standard deviation used in Z Tests and hypothesis testing?

This video is also useful for

  • Students – Deepen understanding of Z Tests, population testing, and hypothesis methods.
  • Educators – Offers a clear framework for teaching hypothesis testing using Z Tests.
  • Researchers – Relevance for conducting and evaluating population-based studies.
  • Statistics Enthusiasts – Provides insights into practical applications of Z Tests and hypothesis testing.