浊度和地表水中的总固体

Turbidity and Total Solids in Surface Water
JoVE Science Education
Environmental Science
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Environmental Science
Turbidity and Total Solids in Surface Water

35,800 Views

09:41 min
April 30, 2023

Overview

资料来源: 玛格丽特工人和金伯利弗莱-Depaul 大学实验室

浊度和总固形物是相关的测量处理地表水的清晰度。浊度是光的间接测量确定的可以通过水量的水清晰度。总固形物是直接测定重量测定水中悬浮的固体颗粒。

高水平的浊度和总固形物是由土壤侵蚀、 排废、 径流或生态社区包括藻类生长或可以入水了扰乱沉积物的底栖生物数量的变化引起的。高水平的浊度和悬浮的固体可以通过吸收热量增加导致水温度和氧含量 (温水持有较少的氧气) 跌幅降低水质量。这些条件也可能会导致降低光合作用,更少的阳光穿透水,使水不能支持一些水生生物。悬浮的物也可以堵塞鱼鳃、 扼杀鸡蛋、 降低经济增长率,和扰乱许多水生生物生境。

一种测量浊度的方法包括使用塞齐盘。塞齐盘是一个金属盘与备用黑色和白色处所 (图 1)。它被连接到具有单脚标记沿着它的绳子。磁盘被放入水,直到它再也不能看到 (图 2)。这种方法的缺点是必须在该字段中,理想的协议需要晴朗的条件和测试区是阴影。此外,如果有大河岸和水位之间的距离,它很难使用塞齐盘。通过使用浊度管,一个可以收集水,然后再回来在实验室中执行浊度测量。

Figure 1
图 1.修改后的沙奇磁盘设计使用在淡水中。

Figure 2
图 2.不同种类的塞齐盘。海洋的风格之一,在左边和右边的淡水版本

Principles

浊度是由测量多少光可以通过水样品的相对测量。高浊度,较少的光将经过样品和水将出现”多云”。高浊度水平引起固体颗粒悬浮在水中的散射的光线,而不是允许它通过水传播。悬浮颗粒的物理特性可以有对整体浊度的影响。较大的中小型的颗粒可以散射光和集中它前进的方向,通过创建通过水光传输的干扰增加浊度。粒子大小也会影响质量的光;较大的颗粒大小往往分散更长波长的光比更短的波长,而更小的粒子有更多的散射效应,在更短的波长上。增加颗粒物浓度也可以较低的光传输当光线都要用到的粒子数目增加和旅行缩短距离的粒子,每个粒子,造成多个散射。较暗的彩色的粒子吸收更多的光,光色的粒子可以增加光的散射,而两者产生增加的浊度的测量结果。整体暗颗粒会导致比打火机彩色粒子的光能量吸收的颜色增加量较高浊度。收集到的未知的水样与去离子 (DI) 水空白样品表示零浊度值进行比较。A 购买标准浊度试剂 (< 1%高岭土 < 0.1%硝酸镁,< 0.1%氯化镁,< 0.1 %2-methyl-4-isothiazolin-3-one,< 0.1%异噻唑啉酮) 添加到空白试验列在预定的测量,以增加云量在已知的增量,直到空白和未知样品中浊度基于观察的一个固定的点底部的两个测试列匹配。实现匹配样本所需的试剂量然后可以转换表到杰克逊浊度单位 (JTUs),一根点燃的蜡烛,举行”杰克逊”管的长玻璃的原始方法的名字命名。

总固形物是水样品中悬浮的固体物质直接测量。用烤箱蒸发的水从样品和分离和权衡的固体,测定了固体颗粒的质量。

Procedure

1.测量浊度

  1. 混合的样品水倒入一个浊度列和填充到 50 毫升行与水样。
  2. 用去离子水 50 毫升线填充第二个”空白”浊度列。
  3. 并排放置两个管和注意在清晰的区别。如果在这两个管同样明显的是黑点,浊度为零。如果样品管中的黑点是不太清楚,请继续执行下一步。
  4. 摇标准浊度试剂。
  5. 添加蒸馏水管 0.5 毫升的试剂。用搅拌棒搅拌内容。
  6. 检查数量的浊度藉由看下来通过黑点的解决方案。如果样品水的浊度大于蒸馏水,继续以 0.5 毫升为增量添加标准浊度试剂,蒸馏水管,记录所用的试剂使用和混合后再加,直到浊度等于样品。
  7. 记录加的浊度试剂的总金额。

2.测量固体总量

  1. 戴手套的手,贴上标签一大烧杯的油脂铅笔。请使用标记的磁带,因为这些烧杯正走进烤箱。
  2. 打开平衡并撕裂它。
  3. 将烧杯放在平衡和记录重量。请确保使用一种平衡,记录到一克的千分之一。使用手套以避免触摸赤手空拳和转移身体水分,从而更改重量的烧杯烧杯。
  4. 用一个量筒,测量 100 毫升的水样品。如果坐了样品,再测量出 100 毫升旋即将采集的水样。
  5. 这一数额倒入烧杯。
  6. 将烧杯放在烤箱在 100 ° C 48 小时来蒸发液体和干燥产生的残留物。
  7. 在 48 小时后机油大烧杯的残留物。请记住: 不要碰烧杯用赤裸的双手。
  8. 减去初始重量 (以克为单位) 的空烧杯从大烧杯的残留获得的增加重量或重量残留的重量。
  9. 重量残留转换 mg/l 使用以下的计算方法
    残留物重量 1000 毫克x温 1000 毫升左右= ? 毫克
    100 毫升 1 g 1 L L

3.LabQuest 方法测量浊度

  1. 变成 LabQuest 掌上电脑显示器上和插件浊度传感器通道 1,单位应该是台大。
  2. 如果单位不在台大,使用手写笔触摸屏幕上的红色区域,选择变更单位和选择台大。
  3. 如果单位是在台大,打开盖子的传感器和擦拭过 (用实验室擦) 和插入已经充满了黑色印上 (100 NTU) 瓶,合上盖子。
  4. 使用手写笔触摸屏幕的红色区域并选择校准。校准屏幕出现时,选择现在校准按钮 (在屏幕的左上角)。
  5. 光标应跳转到第一的值框。看在屏幕右上角的电压。当它落定时,使用手写笔和数字小键盘键入 100。然后选择下面的继续按钮。
  6. 光标应跳转到第二个值框。现在填充第二个瓶子,用 DI 水 (到线)、 帽 — — 它,和它擦去仔细用实验室擦。DI 水瓶子插入传感器,并盖上盖子。当电压落定时,键入 0,按继续按钮。
  7. 然后按确定按钮在屏幕的右下角。校准是完整的。
  8. 丢弃 DI 水从第二个瓶子,然后倒入就扑通一声你冲洗瓶,任何剩余的 DI 水冲洗,然后丢弃样品冲洗水的水样品。然后重新把瓶子装满了 tot 线你水样,重新盖,擦拭掉 (使用实验室湿巾),并插入传感器。盖上盖子,一旦阅读似乎定居,记录测量。

4.LabQuest 方法测量总溶解固体使用电导率

  1. 为总溶解固体 (TDS) 使用电导率: 务必框 (附加到您探头线) 上的开关设置为底部设置 (0-2,000)。
  2. 将探头插入通道 1。单位应当在毫克每升 (mg/L)。
  3. 如果单位不在 mg/L,使用手写笔触摸屏幕上的红色区域,选择变更单位和选择毫克/升。
  4. 如果单位是 mg/L,淹没探针插入水样中你和读数出现稳定时记录你的测量。

浊度和总固形物是相关量化指标,用来量化地表水的清晰度。

浊度是光的间接测量确定的可以通过水量的水清晰度。总固形物是直接测量,记录固体颗粒悬浮在水中的总质量。

高水平的浊度或水中的总固体可以造成许多环境因素。这些包括土壤侵蚀、 排废、 径流或更改包括藻类生长或入水列可以扰乱沉积物的底栖生物数量的生态群落。

高浊度和悬浮的物可降低水质吸收热量,导致增加的水的温度和氧含量相应减少,因为温暖的海水中含有较少的氧气。光合作用可能会下降,因为较少的阳光是能够穿透水,使其不能支持一些水生生物。此外,悬浮的固体可以堵塞鱼鳃、 扼杀鸡蛋、 降低经济增长率,和破坏的许多水生生物生境。

此视频将说明如何量化浊度在实验室环境中,以及如何计算水样中的总固形物。

浊度被造成的固体颗粒悬浮在水中那份散轻而不是让它来传送。浊度测定浓度、 大小和颜色的粒子。较大的颗粒分散和光集中于相比更小的粒子的前进方向。粒子大小也会影响质量轻,与较大粒子散射更长波长的光比短波长。相反,更小的粒子散射波长短更强烈,同时有较长的波长的影响相对较小。

如果粒子样品中都浓密的簇生,光将接触到更多的粒子,和它们,导致多个散射事件之间旅行更短的距离。更少致密的解决方案有更长的平均自由程。暗物质吸收更多的光线,和较轻的微粒增加散射,与这两个导致整体亦越来越混浊。总体而言,深色颗粒导致高浊度比轻粒子由于吸收的光能的增加量。

一种测量浊度的方法是与塞齐盘。为淡水,这是与交替的黑色和白色宿舍直径 20 厘米的金属圆盘。船用直径约 30 厘米纯白色磁盘是标准的。在两种情况下磁盘附加到一根绳子,在已知的时间间隔,标记,掉到了水,直到它不再可见。在失踪绳子的长度被记录为沙奇深度,有关水的浊度。

不过,有这场方法的局限性。较为理想的记录协议要求晴朗的条件和着色的试验区。陡峭、 宽型或松散的河岸可能造成困难或危险,对于磁盘的运算符,或一只小船进入可能需要。使用浊度管收集水回来在实验室进行分析可允许更安全和更多的标准化测量。

一旦水样品回来在实验室里,他们被比作一个参考样本。为做到这一点,标准浊度试剂加入去离子水中预设的增量增加云量,直到样品相匹配,基于观察的一个固定的点,在两个列的底部。增加,以配合样品的试剂量然后可以记录和转换为杰克逊浊度单位或”上海交大”使用参考表。

总固形物可以通过蒸发的水从样品分离和权衡的固体。

现在,我们所熟悉的浊度和总固体测量背后的原则,先来看看如何这些都在实验室设置中测量。

一旦样品水已经收集在字段中,请把它带到实验室进行分析。首先,选择清洁浊度列和填充到 50 毫升行与水样。

接下来,用去离子水 50 毫升线填充第二个”空白”浊度列。

两管–并排地观察的浊度列底部的黑点。如果在这两个管同样明显的是黑点,浊度为零。如果样品管中的黑点是不可见的它将需要添加标准浊度试剂相匹配的参照样品的测试样品浊度。

摇标准的浊度试剂,以再次悬浮微粒。0.5 毫升的试剂添加蒸馏水管,并使用一种搅拌棒调匀内容。

通过放置样品管和参考管并排,和看不通过解决方案在黑点再次检查浊度。如果样品水的浊度是仍然大于蒸馏水,在继续添加标准浊度试剂 0.5 毫升的增量,直到两个管的浊度出现匹配,记录使用的试剂和混合后再加量。最后,记录添加的标准浊度试剂的总金额。使用此值将转换为杰克逊浊度单位。

除了测量浊度,还可以确定示例中包含的固体总量。戴手套的手,贴上标签 abeaker 用油脂铅笔。油脂铅笔是理想的因为这些烧杯将后放进烤箱。接下来,打开平衡并撕裂它。使用手套的双手避免转移身体水分和改变重量的烧杯,其中一个空烧杯放平衡,和记录重量。

确保样品水很好混合的旋转它轻轻地,然后采取一个量筒测量 100 毫升的水样品。倒入烧杯。将样品烧杯放在烤箱设置为 100 ° C 48 小时以蒸发液体和干由此产生的残留物。从戴手套的手烤箱中取出烧杯,让其冷却至室温,和机油含有残余的烧杯。若要确定残留物的重量,减去从大烧杯的残留物的重量空烧杯的初始重量。接下来,将重量残留转换成 mg/L 使用这种计算。

少于 10 上海交大浊度样品被归类为”优秀”;11 到 20 上海交大 21 到 90 上海交大样品是”公平”,和大于 90 上海交大浊度样品中被列为”好”,一系列被归类为”穷人”。

总固形物可以分为总固体测量使用的水质监测定量化分析类别。在这里,小于 100 毫克/升总固体测量被归类为”优秀”,101 至 250 作为”好”,251 到 400 是公正的和样品大于 400 毫克/升被评定为”穷人”。

浊度和总固形物的措施可以在各种情况下和其他潜在的方法来收集和测量这些数据很有用。

另一种方法来测量浊度利用优化,可直接测量的传感器。首先,使用已知的浊度和去离子的水空白样品校准传感器。接下来,水样品放置在浊度传感器,和掌上电脑监视器将显示读出的浊度。这种方法在实验室测量有好处,因为它是更快、 更简单,并可以在字段中,进行但并要求购买更昂贵的设备。

也可以使用自动化的设备,使用电导率探头来获取阅读场中测量总溶解固体量。在这里,探头是手动校准并且已设置为记录可吸入颗粒在 mg/l。探头埋入水样品和掌上电脑显示器上显示阅读的总溶解的固体。再次,此方法提供了更快和更容易的结果比实验室方法,但需要购买 LabQuest 计和电导率探头。

你刚看了浊度和表面水中总固体的朱庇特的简介。现在,您应该了解的理论和原则这些两个宝贵测量的水质量、 如何衡量它们,以及如何使用这些测量数据来确定水样品的质量。谢谢观赏 !

Results

下表用于转换的试剂量成浊度单位 (上海交大)。(表 1)
浊度
优秀 < 10 JTUs
好 11-20 JTUs
公平 21 — — 90 JTUs
可怜 > 90 JTUs

可以使用的水质量监测定量分析类别总固体测量评估总固形物。
总固体 (mg/L)
优秀 < 100
好 101-250
公平 251-400
可怜 > 400

测量增加多 毫升的量 浊度 (JTUs)
1 0.5 5
2 1.0 10
3 1.5 15
4 2.0 20
5 2.5 25
6 3.0 30
7 3.5 35
8 4.0 40
9 4.5 45
10 5.0 50
15 7.5 75
20 10.0 100

表 1。浊度测试结果表,将数滴 (浊度试剂) 转换为浊度单位 (上海交大) 和浊度的水质量监测定量分析类别。

Applications and Summary

浊度和总固形物是重要测量水的质量,因为它们的多干净的水源是最明显的标志。高浊度水平和总固形物可以表明水污染物的产生不利的影响,对人类、 动物和植物的生命包括细菌、 原生动物,营养物质 (硝酸盐、 磷)、 农药、 汞、 铅和其他金属的存在。越来越的混浊地表水中的总固体水不快用于人体美学,并还可以提供表面在水中的致病微生物生长窝藏水传染病原体如隐孢子虫病、 霍乱和鞭毛。大量的悬浮物也可以成为对其他物种生活在水中,如果粒子成为投诉到鳃在水中的氧气呼吸动物的问题。悬浮的颗粒也会打乱光周期和光合作用,改变水中氧气的浓度和令人不安的水生系统食物网。浊度和总固体有时增加藻类生长较高时,或当沉积物举起进水里,一场暴风雨。同时还可以增加水体污染包括工业、 农业、 和住宅径流等人类活动的响应。废水污水处理系统、 城市径流和土壤侵蚀的发展也可以贡献高水平的浊度和总固体。容易在水集的网站,这些两个简单的测量是广泛的威胁,水的质量,所有的一切都呈现表面水那么有用,为人类的目的,也不能够支持本身作为水产生态系统广泛指标。

总固形物是重要的作为使用作为排放监测试验从污水处理厂、 工业厂房、 或广泛的作物灌溉。淡水的水平低的地区往往有更高的蒸发率和更容易受到较高的固体浓度。浊度和总固体浓度往往也会上升期间降雨事件,特别是在更多高度发达地区与不透水表面形成的径流和城市的数量增加。

Transcript

Turbidity and total solids are related measurements used to quantify the clarity of surface waters.

Turbidity is an indirect measure of water clarity that determines the amount of light that can pass through the water. Total solids is a direct measurement, which records the total mass of solid particles suspended in water.

High levels of turbidity or total solids in water can be caused by many environmental factors. These include soil erosion, waste discharge, runoff, or changes in ecological communities including algal growth or abundance of benthic organisms that can disrupt sediments into the water column.

Higher turbidity and suspended solids can lower water quality by absorbing heat, causing increased water temperature and a corresponding decrease in oxygen levels, as warm water holds less oxygen. Photosynthesis may decline, as less sunlight is able to penetrate the water, making it unable to support some aquatic life. Additionally, suspended solids can clog gills, smother eggs, reduce growth rates, and disrupt the microhabitats of many aquatic organisms.

This video will illustrate how to quantify turbidity in a laboratory setting, and how to calculate the total solids in water samples.

Turbidity is caused by solid particles suspended in the water that scatter light rather than allowing it to be transmitted. The degree of the turbidity is determined by the concentration, size, and color of the particles. Larger particles scatter and concentrate light into a forward direction compared to smaller particles. Particle size can also affect light quality, with larger particles scattering longer wavelengths of light more than shorter wavelengths. Conversely, smaller particles scatter short wavelengths more intensely, whilst having relatively little effect on the longer wavelengths.

If particles are densely clustered in a sample, light will come into contact with an increased number of particles, and travel a shorter distance between them, resulting in multiple scattering events. Less dense solutions have a longer mean free path. Darker particles absorb more light, and lighter particles increase scattering, with both resulting in overall increased turbidity. Overall, darker particulates result in higher turbidity than lighter particulates due to the increased amount of light energy absorbed.

One method of measuring turbidity is with a Secchi disk. For freshwater, this is a metal disk 20 cm in diameter with alternating black and white quarters. For marine use a plain white disk of approximately 30 cm in diameter is standard. In both cases the disk is attached to a rope marked at known intervals, and dropped into the water until it can no longer be seen. The length of the rope at the point of disappearance is recorded as the Secchi depth, which is related to the turbidity of the water.

However, there are limitations to this field method. Ideal recording protocol requires sunny conditions and a shaded test area. Steep, wide, or loose riverbanks may pose difficulties or danger for disk operators, or access to a boat may be necessary. Using turbidity tubes to collect water to perform analysis back in the laboratory allows safer and more standardized measurements.

Once the water samples are back in the lab, they are compared to a reference sample. To do this, Standard Turbidity Reagent is added to deionized water in predetermined increments to increase cloudiness until the samples are matched, based on observation of a fixed point at the bottom of the two columns. The amount of reagent added to match the samples can then be recorded and converted to Jackson Turbidity Units or “JTU” using a reference table.

Total solids can be obtained by evaporating the water from the sample to isolate and weigh the solids.

Now that we are familiar with the principles behind the measurements of turbidity and total solids, let’s take at look at how these are measured in a laboratory setting.

Once the sample water has been collected in the field, bring it into the laboratory for analysis. First, select a clean turbidity column and fill to the 50-mL line with the sample water.

Next, fill a second “blank” turbidity column with deionized water to the 50-mL line.

Place the two tubes side-by-side and observe the black dot at the base of the turbidity column. If the black dot is equally clear in both tubes, turbidity is zero. If the black dot in the sample tube is less visible, it will be necessary to add Standard Turbidity Reagent to match the turbidity of the reference sample to that of the test sample.

Shake the Standard Turbidity Reagent to re-suspend the particulates. Add 0.5 mL of the reagent to the distilled water tube, and use a stirring rod to mix the contents thoroughly.

Check the turbidity again by placing the sample tube and reference tube side-by-side, and looking down through the solutions at the black dots. If the turbidity of the sample water is still greater than that of the distilled water, continue to add Standard Turbidity Reagent in 0.5 mL increments, until the turbidity of the two tubes appears matched, recording the amount of reagent used and mixing after each addition. Finally, record the total amount of Standard Turbidity Reagent added. Use this value to convert to Jackson Turbidity Units.

In addition to measuring turbidity, the total solids contained in the sample can also be determined. With gloved hands, label abeaker with a grease pencil. A grease pencil is ideal, as these beakers will later be placed into an oven. Next, turn on the balance and tare it. Using gloved hands to avoid transferring body moisture and altering the weight of the beaker, place one of the empty beakers on the balance, and record the weight.

Ensure the sample water is well mixed by swirling it gently, then take a graduated cylinder and measure 100 mL of the water sample. Pour this into the beaker. Place the sample beaker in an oven set to 100 °C for 48 h in order to evaporate the liquid and dry the resulting residue. Remove the beaker from the oven with gloved hands, let it cool to room temperature, and reweigh the beaker containing the residue. To determine the weight of the residue, subtract the initial weight of the empty beaker from the weight of the beaker with residue. Next, convert the weight of the residue into mg/L using this calculation.

Turbidity samples with a JTU of less than 10 are classed as “Excellent”; a range of 11 to 20 JTU is classed as “Good”, 21 to 90 JTU samples are “Fair”, and in samples of greater than 90 JTU turbidity is classed as “Poor”.

Total solids can be categorized using the Water Quality Monitoring Quantitative Analysis categories for total solids measurements. Here, a total solids measurement of less than 100 mg/L is classed as “Excellent”, 101 to 250 as “Good”, 251 to 400 are “Fair”, and samples with greater than 400 mg/L are rated “Poor”.

Measures of turbidity and total solids can be useful in a variety of situations, and other potential methods to collect and measure these data.

Another method to measure turbidity utilizes a sensor optimized to measure it directly. First, the sensor is calibrated using a sample of known turbidity and deionized water blank. Next, a water sample is placed in the turbidity sensor, and the handheld monitor will display a readout of turbidity. This method has benefits over the laboratory measurements in that it is faster, simpler, and can be carried out in the field, but does require the purchase of more expensive equipment.

Total dissolved solids can also be measured in the field using an automated device, which uses a conductivity probe to obtain a reading. Here, the probe is manually calibrated and set to record particulates in mg/L. The probe is submerged into the water sample and the total dissolved solids reading is displayed on the handheld monitor. Again, this method provides quicker and easier results than the laboratory method, but requires the purchase of a LabQuest meter and conductivity probe.

You’ve just watched JoVE’s introduction to Turbidity and Total Solids in Surface Water. You should now understand the theory and principles underlying these two valuable measurements of water quality, how to measure them, and how to use these measurements to determine the quality of your water samples. Thanks for watching!

Tags