资料来源: 玛格丽特工人和金伯利弗莱-Depaul 大学实验室
氮、 磷是水生生态系统中发现的植物营养素,都作为测试部分的水质量进行监测,因为过量会导致重大的水质量问题。
常见的窗体硝酸盐 (没有3–),溶解在水中易被 photosynthesizers 等藻类吸收测量水中的氮。常见的测量是磷的磷酸 (PO43-),既是磷的强烈吸引到泥沙颗粒在水中溶解。在过量,这两种营养素可以导致水生植物生长 (水华,图 1),可以破坏光、 温度和氧气在水下面,导致水体富营养化和缺氧 (低水中的溶解氧) 水平增加形成没有生物活性”死区”。硝酸盐和磷的来源包括废水处理厂,从受精卵的草坪和农用土地、 故障化粪池、 动物粪便径流和工业废物排放径流。
图 1。水华
2011 年,此图所示的绿色浮渣是最糟糕的蓝藻在几十年中经历了伊利湖。记录暴雨春雨冲入湖,促进增长生产蓝藻水华微囊藻毒素的肥料。充满活力的绿色丝从北岸向外伸展。
可以使用已知的化学试剂,使样品时具体的营养物,当颜色随增加颜色强度指示的养分浓度增加的水样品中测定硝酸盐和磷酸盐浓度。为了确保任何粘结到沉积物在水中的磷酸盐分子释放,磷样品消化化学与热释放测定样品中总磷的磷酸键。
量化产生试剂的颜色强度,分光光度计用来测量特定波长的光,与造成的营养物和其试剂 (硝酸盐琥珀色; 磷酸盐蓝色) 每种颜色对应。分光光度计然后发送一束光通过每个样品测量的颜色 (吸光度) 被吸收的光量。颜色越深,越高的吸收。分光光度计然后转换显示的养分浓度 (mg/L) 基于已知的浓度测定吸光度。
1.测量样品中氮
2.测量样品中的磷
氮、 磷是的植物养分发现在水生生态系统,然而,过量,他们可能会导致重大的水质量问题。氮和磷在水中的硝酸盐和磷酸盐,形式分别通常发现。这两种营养物质溶解在水中和易被 photosynthesizers 等藻类吸收。
硝酸盐和磷酸盐从废水处理厂、 受精卵的草坪和农田、 故障化粪池和工业废物排放进入通过淡水径流水系统。在过量,这两种营养素可以导致增加水生植物的生长和水藻,叫做富营养化。这些藻类生活在水面上,以便轻松访问氧气和阳光。
因此,水体富营养化可防止低水位从访问到阳光和空气中的氧气。当这些藻类死了时,他们陷入低水位和分解,消耗氧在深水中造成缺氧或溶解的氧水平低。缺乏氧气,并切断了补给,那深深的水变得死区。其结果是,鱼和其他生物死亡大规模的数字。死区是普遍的在世界的海洋和湖泊,主要是在人口密集的城市地区。
这个视频将介绍测量硝酸和地表水,磷酸盐浓度的方法和论证在实验室测量。
水中的氮”作为-硝态氮。”方面的报道”硝酸盐为氮”,指的是以硝酸盐形式的氮量。因此,作为硝态氮浓度可以转化成硝酸盐浓度使用分子量的氮及硝酸盐氮的比率。
硝酸浓度被衡量使用镉还原法。金属镉降低硝酸盐与亚硝酸盐,然后亚硝酸根离子与对氨基苯磺酸酸形成中间重氮盐的反应。重氮盐然后夫妇与龙胆酸,并形成一种琥珀色的化合物。琥珀色的颜色越深,样品中硝酸盐的浓度越高。
水样中磷的浓度方面磷磷酸形成大量的同样,报道。磷酸盐和磷酸作为磷浓度之间的转换可以使用分子量轻松完成。磷酸盐是目前在水中,许多不同的构象。正磷酸盐通过水解首先必须通过加热样品与酸和钾过硫酸铵转换所有的磷酸盐。
抗坏血酸/钼酸盐法用于计算正磷酸盐浓度。正磷酸盐与钼酸钠在酸性条件下生产磷酸/钼酸盐复杂反应。抗坏血酸然后用于减少复杂、 生产蓝色色的产品。为了量化产生在这两个实验试剂的颜色强度,色度计用于测量的光量彩色物种被吸收。吸光度然后转换成浓度。
以下的实验将证明硝酸分析和磷酸盐浓度水样中的预混合试剂数据包来执行这种比色技术。
要开始氮测量,为硝酸对色度计,找到程序和输入相应的程序数量或设置色度计来测量在 420 毫微米。测量 10 毫升的水样品,到样品管、 吸管和标签管。准备第二次相同的管,并列为空白。
将一个预混的镉还原方法试剂数据包的内容添加到样品管。盖两个样管。开始计时试剂 1 分钟反应期。摇管大力用手反应时间完成之前。
把管放下来,并开始第二个 5 分钟反应期,以便减少氮的镉。当反应期结束,擦干净用不起毛的纸巾既管。
将样品管与没有试剂,标记的空白,在色度计。确保没有标签干涉光路。紧紧地覆盖具有仪器帽,以确保所有的光线阻止样品室的单元格。
校准 0.0 mg/L 硝酸盐氮作为阅读与空白比色计。删除空白管和样品管置于样品架,盖上盖子的文书。测量样品的吸光度,并显示为样品中氮的浓度的硝酸。
水样中磷的测定是类似于氮的测定。第一,措施 5 毫升的水样品和吸管它入样品管。将一个预混合的钾过硫酸铵粉枕为膦酸的内容添加到样品管。
瓶盖管紧,摇动使粉末溶化。标签顶部的盖子。将导管放在反应堆里罩和热 30 分钟在 150 ° c。加热后,从反应器中移除管,将其放置在一个管架,并允许它冷却到室温。
接下来,通过样品管中加入 2 毫升的 1.54 M 氢氧化钠调整 ph 值。帽管和混合。色度计、 定位程序号为磷酸和输入程序号,或设置分光光度计测量吸光度在 880 nm。
清洁无绒布擦拭,样品管和加载测试管到色度计。请确保没有标签干涉仪的光路。将封面放在仪器上,和校准使用的未反应的样品作为空白。
删除管从仪器,并将预混的抗坏血酸法试剂数据包的内容添加到试管中。瓶盖管紧,并动摇管混合。将导管放在机架上,并开始使用计时器 2 分钟反应期。
反应时间结束后溶液颜色应该是蓝色的。清洁用皮棉免费纸巾管外。将试管放入仪器与出光路的所有标签。
请关闭样品室盖,按读取按钮。结果将显示在 mg/l。如果使用分光光度计,测量样品吸光度在 880 nm。
在这个实验中 5 个不同的样本地点比较了浓度的硝酸盐和磷酸盐在大都市的支流。
清澈的溪水通常包含 0 到 1 mg/L 的硝酸盐氮和磷磷 0 到 0.03 毫克/升。3 到 5 毫克/升的硝酸盐氮和 0.03 到 0.1 毫克/升,磷酸盐磷之间的浓度是很高的和以上这些范围考虑富营养化。
3 5 的抽样地点中的硝酸盐和磷酸盐的水平很高。同样,平均硝酸盐和磷酸盐浓度相比上游和下游的水处理厂。上游的测量表示未经处理的水,而下游测量表示径流处理厂。
下游测量较低由于治疗过程中的有机物质去除磷酸盐。然而,平均硝酸盐浓度较高下游,指示可能硝酸盐投入放电附近可能从草坪肥料。
了解水径流养分含量和对海洋植物的生命及其造成的影响是极其重要的保护我们的自然生态系统。
在以下示例中,在远程环境如珊瑚礁研究了海洋微生物。这些结果可以帮助澄清改变由于硝酸盐浓度和由此产生的藻类大量繁殖的微生物种群。
到外部环境中,防止污染,民政事务总署在封闭的容器中分别采集了水样。微生物标本 0.22 微米滤清器。过滤后的水进行了分析,研究无机杂质。宏基因组分析发现,微生物的遗传材料转让与硝酸盐浓度呈正相关。
为了打击水体富营养化,是重要的是了解土壤径流和土壤污染物扩散的命运。在以下示例中,模拟降雨,和土壤中污染物的命运进行了研究。土壤盒挤满土壤含污染物,在这个案例的尿素,利率的一种常见的氮肥。含磷分子可以使用相同的过程进行了研究。降雨在不同条件下进行了模拟和径流收集和分析。
与上一示例类似,径流研究也可以在户外在自然环境中。在这里,在市区建立了径流研究设施。挡土墙建成以防止径流污染到其他领域,并使控制的水集合。绘图区,以及分离,防止侧水运动。利用灌溉系统进行了水径流研究。收集水径流及化学分析完成,以确定水中的污染物。
你刚看了朱庇特的介绍,水表面的水中的营养成分分析。现在,您应该了解与水径流和富营养化,以及如何测量水样中的养分含量相关的挑战。谢谢观赏 !
图 2。图比较硝酸盐之间不同土地利用类型 (欠发达、 农业和城市)。
平均的硝酸盐浓度相比上游和下游从一个水处理厂 (图 3)。下游测量表示放电从治疗。
图 3。平均相比从一个水处理厂的上游和下游的硝酸盐浓度。下游测量表示放电从治疗。
图 4。图为芝加哥河沿岸不同位置的磷。
平均磷酸盐浓度相比上游和下游从一个水处理厂 (图 5)。下游测量代表治疗出院。
图 5。平均从一个水处理厂比较上游和下游的磷酸浓度。下游测量代表治疗出院。
高浓度的硝酸盐和磷可以刺激在水的富营养化条件造成负面影响其它水质量因素包括溶解的氧、 温度和其他指标的水华。过量的硝酸盐会导致缺氧水 (低溶解氧) 不再能够支持创建的”死区”在哪里非移动物种大规模死亡和移动的物种迁往其他水域的有氧生活。死区全球范围内发生在沿海地区大量的高养分径流和废水收敛,且大多数水生生活高度集中 (图 6)。两个最大的死区是水的在哪里平均 49,000 km2载小于 2 毫克/升,溶解氧,Baltic Sea 和墨西哥海湾北部与在 17,353 km2测量死区。
图 6。海洋死区世界全
红色圆圈显示的位置和大小的许多死区。黑点显示未知大小的死区。这幅图像中的深蓝色显示高浓度颗粒有机物,相对值的过于肥沃的水域,可以最终在死区。大小和数量的海洋死区 — — 那深深的水在如此之低的地区溶解氧,海洋生物无法生存 — — 已经爆炸在过去半个世纪。这不是巧合,死区发生下游的地方人口密度是高 (深棕色)。
Nitrogen and phosphorus are essential plant nutrients found in aquatic ecosystems, however, in excess amounts, they can cause significant water quality problems. Nitrogen and phosphorous in water are typically found in the forms of nitrate and phosphate, respectively. Both nutrients are dissolved in water and are readily absorbed by photosynthesizers such as algae.
Nitrates and phosphates enter the water systems through freshwater runoff from wastewater treatment plants, fertilized lawns and agricultural lands, faulty septic systems, and industrial waste discharge. In excess amounts, both nutrients can cause an increase in aquatic plant growth and algae blooms, called eutrophication. These algae blooms live at the water surface, in order to easily access oxygen and sunlight.
As a result, eutrophication prevents lower water levels from access to sunlight and oxygen in the air. When the algae die, they sink into the lower water levels and decompose, consuming oxygen in the deeper water causing hypoxia, or low dissolved oxygen levels. Starved of oxygen, and cut off from resupply, the deep water becomes a dead zone. As a result, fish and other organisms die in massive numbers. Dead zones are widespread in the world’s oceans and lakes, predominantly in highly populated urban areas.
This video will introduce the methodology for measuring nitrate and phosphate concentrations in surface water, and demonstrate the measurements in the laboratory.
Nitrogen in water is reported in terms of “nitrate-as-nitrogen.” The phrase “nitrate-as-nitrogen” refers to the amount of nitrogen in nitrate form. Therefore, the nitrate-as-nitrogen concentration can be converted to nitrate concentration using the ratios of the molecular weights of nitrogen and nitrate.
The nitrate concentration is measured using the cadmium reduction method. The cadmium metal reduces the nitrates to nitrites, then the nitrite ions react with sulfanilic acid to form an intermediate diazonium salt. The diazonium salt then couples with gentisic acid, and forms an amber-colored compound. The darker the amber color, the higher the concentration of nitrate in the sample.
The concentration of phosphorus in water samples is reported similarly, in terms of the amount of phosphorus in phosphate form. The conversion between phosphate concentration and phosphate-as-phosphorus concentration can be easily completed using molecular weight. Phosphates are present in water in many different conformations. All phosphates must first be converted to orthophosphates through hydrolysis by heating samples with acid and potassium persulfate.
The ascorbic acid/molybdate method is used to calculate orthophosphate concentration. Orthophosphates react with sodium molybdate in acidic conditions to produce a phosphate/molybdate complex. Ascorbic acid is then used to reduce the complex, producing a blue colored product. To quantify the color intensity produced by the reagent in both experiments, a colorimeter is used to measure the amount of light absorbed by the colored species. The absorbance is then converted to concentration.
The following experiment will demonstrate the analysis of nitrate and phosphate concentrations in water samples using pre-mixed reagent packets to perform this colorimetric technique.
To begin the nitrogen measurement, find the program for nitrate on the colorimeter, and input the appropriate program number or set the colorimeter to measure at 420 nm. Measure 10 mL of the water sample, pipet into a sample tube, and label the tube. Prepare a second identical tube, and label it as the blank.
Add the contents of one premixed cadmium reduction method reagent packets to the sample tube. Cap both sample tubes. Begin timing the 1-min reaction period for the reagent. Shake the tube vigorously by hand until the reaction time is complete.
Set the tube down, and begin a second 5-min reaction period to allow for the cadmium to reduce nitrogen. When the reaction period is over, wipe both tubes clean with a lint-free paper towel.
Place the sample tube with no reagent, labeled the blank, in the colorimeter. Ensure that no labels interfere with the light path. Tightly cover the cell with the instrument cap to ensure that all ambient light is blocked from the sample chamber.
Calibrate the colorimeter with the blank for a reading of 0.0 mg/L nitrate as nitrogen. Remove the blank tube and place the sample tube in the sample holder, and replace the instrument cap. Measure the sample absorbance, and display the concentration of nitrate as nitrogen in the sample.
The measurement of phosphorus in a water sample is similar to the measurement of nitrogen. First, measure 5 mL of the water sample and pipet it into a sample tube. Add the contents of one pre-mixed potassium persulfate powder pillow for phosphonate to the sample tube.
Cap the tube tightly and shake to dissolve the powder. Label the top of the cap. Place the tube in the reactor in a hood, and heat for 30 min at 150 °C. After heating, remove the tube from the reactor, place it in a tube rack, and allow it to cool to room temperature.
Next, adjust the pH by adding 2 mL of 1.54 M sodium hydroxide to the sample tube. Cap the tube and mix. On the colorimeter, locate the program number for phosphate and enter the program number, or set the spectrophotometer to measure absorbance at 880 nm.
Clean the sample tube with a lint-free wipe, and load the test tube into the colorimeter. Make sure that no labels interfere with the light path in the instrument. Place the cover on the instrument, and calibrate using the unreacted sample as the blank.
Remove the tube from the instrument, and add the contents of a premixed ascorbic acid method reagent packet to the test tube. Cap the tube tightly, and shake the tube to mix. Place the tube in a rack, and initiate a 2-min reaction period using a timer.
After the reaction period is over the solution color should be blue. Clean the outside of the tube with a lint free paper towel. Place the test tube into the instrument with all labels out of the light path.
Close the sample chamber cover and push the READ button. The results will be shown in mg/L. If using a spectrophotometer, measure the sample absorbance at 880 nm.
The concentrations of nitrate and phosphate in a metropolitan river branch were compared at 5 different sample sites in this experiment.
Clean river water typically contains 0 to 1 mg/L of nitrate-nitrogen and 0 to 0.03 mg/L of phosphate-phosphorus. Concentrations between 3 to 5 mg/L of nitrate-nitrogen and 0.03 to 0.1 mg/L of phosphate-phosphorus is considered high, and above these ranges considered eutrophic.
The nitrate and phosphate levels were high in 3 of the 5 sampling locations. Similarly, average nitrate and phosphate concentrations were compared upstream and downstream of a water treatment plant. The upstream measurement represents untreated water, while the downstream measurement represents runoff from the treatment plant.
The downstream measurement was low in phosphates due to the removal of organic material during the treatment process. However, average nitrate concentrations were higher downstream, indicating possible nitrate inputs near the discharge area, possibly from lawn fertilizer.
Understanding the nutrient content of water runoff, and its resulting effect on marine plant life is extremely important to preserving our natural ecosystems.
In the following example, marine microorganisms were studied in remote environments such as reefs. These results can help elucidate changing microbial populations due to nitrate concentrations and the resulting algal blooms.
Water samples were collected in containers that are closed off to the external environment to prevent contamination. Microbes were collected on a 0.22-μm filter. The filtered water was analyzed to examine inorganic impurities. Metagenomic analysis found that the transfer of microbial genetic material was positively correlated with nitrate concentration.
In order to combat eutrophication, it is important to understand soil runoff and the fate and transport of contaminants in soil. In the following example, rainfall was simulated, and the fate of contaminants in soil studied. Soil boxes were packed with soil containing contaminants of interest, in this case urea, a common form of nitrogen fertilizer. Phosphorous-containing molecules can be studied with the same procedure. Rainfall was simulated under different conditions, and the runoff collected and analyzed.
Similar to the last example, runoff can also be studied outdoors in natural environments. Here, a runoff research facility was constructed in an urban area. A retaining wall was constructed to prevent runoff contamination to other areas, and to enable controlled water collection. Plot areas were separated as well, to prevent lateral water movement. Water runoff studies were conducted using irrigation systems. Water runoff was collected and a chemical analysis completed to determine contaminants in the water.
You’ve just watched JoVE’s introduction to water nutrient analysis in surface water. You should now understand the challenges associated with water runoff and eutrophication, and how to measure nutrient content in water samples. Thanks for watching!
Related Videos
Environmental Science
81.1K 浏览
Environmental Science
49.3K 浏览
Environmental Science
12.5K 浏览
Environmental Science
22.0K 浏览
Environmental Science
53.0K 浏览
Environmental Science
89.4K 浏览
Environmental Science
35.8K 浏览
Environmental Science
55.6K 浏览
Environmental Science
38.8K 浏览
Environmental Science
26.4K 浏览
Environmental Science
30.0K 浏览
Environmental Science
125.2K 浏览
Environmental Science
29.3K 浏览
Environmental Science
215.5K 浏览
Environmental Science
16.4K 浏览