可视化的土壤微生物,通过接触滑动检测和显微镜

Visualizing Soil Microorganisms via the Contact Slide Assay and Microscopy
JoVE Science Education
Environmental Microbiology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Environmental Microbiology
Visualizing Soil Microorganisms via the Contact Slide Assay and Microscopy

42,353 Views

10:04 min
February 23, 2015

Overview

资料来源: 实验室的博士伊恩胡椒和博士查尔斯称-亚利桑那大学
演示作者: 布拉德利施密茨

土壤包括在地球的表面,包含生活做出贡献的生物和非生物因素的薄层。非生物部分包括无机粒子的大小和形状等,确定土壤的质地。生物部分包含了植物残体、 根、 有机物、 微生物。土壤微生物丰度和多样性是膨胀,一克土壤中含有 107 8细菌、 放线菌 106 8 、 105 6真菌、 103酵母、 原生动物4-6月 10 日,103-4藻类和 53线虫。在一起,生物和非生物因素形成周围植物的根部,称为根际,提供有利的条件,为土壤微生物的体系结构。

生物和非生物因素促进土壤中的生活。然而,他们也有助于限制微生物的压力动态。生物胁迫涉及生活适应和生存的环境条件之间的竞争。例如,微生物可以分泌抑制或有毒物质,危害周边的微生物。青霉是臭名远扬的真菌,因为它减少了养分的竞争由生产抗菌、 哪些人收获打造制药青霉素。非生物胁迫引起的物理或化学特性限制微生物的生存,如光、 水分、 温度、 ph 值、 养分和纹理。

Principles

直接观察土壤有机体、 粒子和行为在不同土壤环境之间的相互关系是困难的但接触幻灯片测定,也被称为埋幻灯片技术,开发的罗西等人(1936 年) 入土壤微生物学提供快照观点。此方法是用于观测土壤真菌、 放线菌,细菌通过显微镜。虽然它不是为微生物量化,因为它只意味着更大异构环境中的一小部分。

这种方法容易的通过玻璃滑入土壤埋了好几天,然后用乙酸固定在幻灯片上的微生物。微生物与孟加拉染料染色,显微镜油浸渍法对 100 X 目的通过观察。可以区分三种微生物类群,如细菌显示为小的圆形形状,放线菌丝为薄的字符串和真菌菌丝作为厚实的螺纹。在土壤中,几乎所有的细菌都较小和圆比纯文化营养的应力,导致萎缩和舍入为一个更有利的表面: 体积比。未染色的不规则暗形状是土壤颗粒。不同养分修订可以添加到土壤提供碳和葡萄糖的来源,促进微生物的生长和相互作用。这种技术可以很容易观察土壤微生物学和有助于确定环境中存在的几个生物。

Procedure

1.土壤幻灯片缩影制备

  1. 从表面收集园土 (0-6″深度),和成两个单独杯重量 150 克土。
    1. 如果土壤有机物质密度高,重量 100 克。
  2. 标签一杯”待遇”和其他”控制”。
  3. 计算所需改变水分含量的水量。
    1. 水分含量经常是接近田间持水量。
      Equation 1 1
  4. 蒸馏水用量筒测量量。
  5. 倒入两小瓶的蒸馏水量。
  6. 标签一小瓶”待遇”和其他”控制”。
  7. 在”待遇”土壤干燥重量依据修订足够葡萄糖为最后一层泥土葡萄糖浓度为 1%,与”治疗”瓶中的水。
  8. 200 毫克 NH43没有加入”治疗”瓶,搅拌溶解的修订。硝酸盐作为氮源营养物质在土壤中的微生物。
  9. 不修订”控制”小瓶。
  10. 在小整除的大约 50 毫克,拌匀成”待遇”杯”待遇”小瓶的内容。用锅铲搅拌后每个分装的加法。
  11. 在小整除的拌匀成”控制”杯”控制”小瓶的内容。用锅铲搅拌后每个分装的加法。
  12. 四个干净的显微镜载玻片的标签: 两个”待遇”和”控制”的两张幻灯片。
  13. 两个”待遇”幻灯片插入”待遇”土杯,并将两个”控制”幻灯片插入到”控制”土杯。离开 2 厘米的每张幻灯片上的土壤表面的突起,一定要两个幻灯片之间留下的缺口。
  14. 盖杯用塑料包装并确保它用一根橡皮筋。
  15. 几次穿刺包允许空气,但仍然阻止过度蒸发。
  16. 记录两个杯子的重量。
  17. 填土的杯子,在室温下,在一个指定区域孵化器孵育 7 天。

2.幻灯片染色及显微镜

  1. 记录两个杯子的重量。
  2. 幻灯片删除时计算土壤水分。
  3. 按每张幻灯片到倾斜的位置并撤回所以不干扰幻灯片的上部的脸从每个杯子删除两张幻灯片。
  4. 识别和标识的一侧要染色,观察到的幻灯片。
  5. 轻轻地敲上台阶顶要删除大型土壤颗粒的幻灯片。
  6. 使用湿纸巾,洁面低的幻灯片。干燥的室温的幻灯片。
  7. 戴护目镜及与钳持每张幻灯片,浸泡成 40%(v/v) 乙酸为 1-3 分钟下风柜幻灯片。
  8. 冲洗掉过剩的酸下一连串温柔的水。
  9. 使用滴管瓶,覆盖表面的酚醛孟加拉幻灯片。在容器赶上多余染色染色架上支持幻灯片。要小心,不要洗与可能删除幻灯片的表面微生物的力量。
  10. 染色的幻灯片 5-10 分钟,不要让幻灯片变得干燥。添加所需的更多污点。
  11. 轻轻地清洗幻灯片删除多余的污点。
  12. 让室温干燥的幻灯片。
  13. 使用油浸物镜,观察幻灯片使用显微镜 (图 1)。

Figure 1
图 1。在显微镜下一张幻灯片。

各种生物与土壤中的无机成分之间的关系至关重要了解土壤变化和环境的压力,但不能没有直接可视化阐明。

土壤,极其复杂的系统,是数以百万计的生物多样性的栖息地。该区域直接周围植物的根部土壤尤其,称为根际,包含一系列独特的直接受植物根系的有机体。

根际的生物,或非生物组成部分包括无机粒子的大小和形状等,有助于土壤的质地。生物,或生物,部分包括植物残体、 根、 有机物、 微生物。

这个视频将展示直接可视化的根际土壤生物和非生物成分,了解影响土壤变化因素,预测环境的压力。

显微镜下的生物体往往驻留在位于土壤孔隙内的水中。细菌是最简单和最丰富的生物存在于土壤中,并发现在许多形态包括领域称为球菌,杆称为杆菌和丝状的形式。

真菌的物种,如酵母和霉菌,是第二最繁盛的生物在土壤中。他们工作分解和回收死的有机物质。丝状真菌镜检视觉上不同于其他的微生物,因为他们拥有释放孢子的长和分枝菌丝。

直接观察这些生物之间的关系具有挑战性,但可以通过使用接触幻灯片测定。此方法被进行几天到土壤淹没玻璃幻灯片和允许的生物和土壤颗粒吸附到滑动面。

在角度,以防止涂抹的表面然后删除幻灯片。这种微生物是固定与醋酸,和染色用孟加拉红染色,使可视化通过光镜。

现在,您了解接触幻灯片测定技术背后的原则,让我们在实验室里看过程。

首先,收集花园土壤表层和转移土壤进了实验室。入 2 分开的容器重 150 克的土壤。一个容器应作为治疗样本,将被修改的营养物质,鼓励迅速扩散的生物标记。标签,另一个作为该控件,将保持不变。

计算出的水含量在土壤中,使用中土壤水分含量测定此集合中显示视频的技术。这个计算基础,确定所用的水在土壤中干体重的基础上。现在计算需要添加给 15%土壤水分含量的水的数量。这给外地的能力,优化为微生物的生长带来了水分。

测量计算的量的蒸馏水使用量筒。每个容器中倒入水的计算的体积。基于先前确定的干重的土壤,计算实现需要最后一层泥土葡萄糖浓度为 1%的质量,使用的干重基础的葡萄糖的量。权衡这一数额的葡萄糖,并将其添加到处理容器只。

体重 200 毫克的硝酸铵,然后将它添加到处理容器只。硝铵作为土壤微生物的氮营养源。混合容器中的土壤、 葡萄糖和硝酸铵混合物。

接下来,标签 4 清洁显微镜载玻片: 作为治疗,两个和两个作为对照。两种治疗幻灯片插入处理土壤容器。离开暴露以上土壤表面,每张幻灯片的一段,并确保两个幻灯片之间还有差距。

在以同样的方式将两个控制幻灯片插入控制土壤容器。盖上保鲜膜,杯,用一根橡皮筋固定。几次穿刺塑料包装要允许空气转让,但仍然禁止过度蒸发。

最后,权衡两个杯子,记录自己的体重,和他们在指定的区域,在室温下孵育七天。

经过七天的孵化,用称重土杯计算土壤水分含量。确定是否已失去了水分的蒸发,由于重量和取代水,如果需要的话。

卸下塑料包装容器,从和两张幻灯片从土壤按每张幻灯片到倾斜的位置,并撤回,幻灯片的上部的脸是不受干扰。

轻轻地点击幻灯片删除大型土壤颗粒。使用湿纸巾,洁面低的幻灯片。允许他们在通风橱里室温干燥。一次干,用钳,拿起一张幻灯片和浸入乙酸 1 到 3 分钟。

冲洗幻灯片顶部的一连串温柔的蒸馏水,多余的酸性物质。所有幻灯片重复这些步骤。允许的幻灯片,空气干燥。

在一个容器,以赶上多余的染料染色架上支持幻灯片。使用滴管,轻轻地覆盖表面的每张幻灯片用酚醛孟加拉染料。允许染色为 5 到 10 分钟,照顾要添加更多的染料,以保持湿的幻灯片的幻灯片。轻轻地冲洗用水来删除多余的污点,幻灯片和允许的幻灯片在室温下晾干。

检查上光镜,使用油浸物镜的幻灯片。经处理的土壤会有更多的土壤微生物。

很容易可以可视化典型土壤样品中的真菌和细菌的生物之间的相互作用。土壤颗粒显示深色的不规则形状。

真菌生物显示厚厚的丝状菌菌丝,而放线菌显示薄的丝状菌菌丝。

作为小球菌或支撑杆的形状,通常在一丛丛,土壤颗粒或衬砌真菌菌丝发现了细菌。

从土壤生物直接分离是重要的土壤和环境特征的认识。

昆虫病原线虫是微观圆寄生昆虫的蠕虫。虽然它们不可视化中的接触幻灯片含量,他们能分离出采集的土壤样品,如本示例所示。

第一,松材线虫被诱捕昆虫从目测确定土壤中。线虫标本,分离的死昆虫的诱饵,将昆虫尸体放在潮湿和黑暗的环境中,并允许线虫迁移出到周围的水。松材线虫然后从水中,收集和分析。

丝状真菌对土壤健康由于其养分再循环中的作用至关重要。在此示例中进行隔离和观察的丝状真菌的土壤。

土壤样品,用水稀释,并添加来分开不育孟加拉链霉素琼脂平板。链霉素能阻止细菌的生长,并使真菌的生长。真菌菌落计数及安装到使用胶带玻璃幻灯片。真菌然后成像使用光学显微镜。

土壤微生物自然分解成分在土壤中,死亡的植物和生物等。生物降解和殖民化的生物可降解塑料薄膜被审查,在此示例中所示。

真菌,分离从埋在泥土中,几个月来的塑料薄膜。真菌,然后单独的测试可以在塑料薄膜上成长。塑料薄膜然后孵育与没有生长介质,所选的真菌菌株为观察直接降解塑料的真菌。

你刚看了朱庇特的简介定性成像接触幻灯片测定的土壤微生物。你现在应该明白如何准备接触的幻灯片,和可视化的土壤微生物。谢谢观赏 !

Results

真菌显示厚厚的丝状菌菌丝 (图 2)。放线菌显示薄、 丝状菌的菌丝。细菌显示小球菌或支撑杆的形状。他们经常发现在一丛丛,土壤颗粒或衬砌真菌菌丝。土壤颗粒显示不规则,黑暗形状 (图 3)。

Figure 2
图 2。使用 100 X 物镜的接触幻灯片图像。
照片礼貌的 W.H.富勒。

Figure 3
图 3。使用 100 X 物镜的接触幻灯片图像。
照片礼貌的 W.H.富勒。

Applications and Summary

接触的幻灯片测定,也被称为埋幻灯片,是一种简单的技术,利用定性观察土壤生物区系。这种测定方法定性显示真菌菌丝,细丝放线菌、 细菌和土壤颗粒之间的相互作用。个人或行业可以采用这种测定方法收集知识关于特定土壤健康的农业,问候,园艺、 堆肥、 教学、 研究。然而,这种技术不量化土壤微型生物,因为它仅包含一个较大的异构环境小画像。

土壤生物关系可以遵守进行接触幻灯片化验和查看结果通过 100 X 油浸显微镜 (图2和图3)。简单性和易用性表演这种测定方法使它成为一个伟大的起始技术受到了微生物学和第一次可能通过显微镜观察微生物的那些。

References

  1. Pepper, I. L., & Gerba, C P. 'Contact Slide Assay.' Environmental Microbiology A Laboratory Manual. 2nd ed. Elsevier 19-25 (2004).
  2. Pepper, I. L., Gerba, C. P., & Gentry, T. J. 'Earth Environments.' Environmental Microbiology. 3rd ed. Elsevier 59-88 (2014).
  3. Rossi, G., Ricardo, S., Gesue, G., Stanganelli, M., and Want, T.K. Direct Microscopic and bacteriological investigations of the soil. Soil Science. 41, 52 – 66 (1936).

Transcript

The relationships between the various organisms and inorganic components in soil are vital to understanding soil changes and environmental stresses, but cannot be elucidated without direct visualization.

Soil, an extremely complex system, is a habitat for millions of diverse organisms. The region of soil directly around plant roots in particular, called the rhizosphere, contains a unique array of organisms that are directly influenced by the plant roots.

The abiotic, or non-biological, component of the rhizosphere includes inorganic particles ranging in size and shape that contribute to the soil’s texture. The biotic, or biological, portion includes plant residues, roots, organic matter, and microorganisms.

This video will demonstrate the direct visualization of the biotic and abiotic components of rhizosphere soil, in order to understand factors affecting soil changes and to predict environmental stresses.

Microscopic organisms tend to reside in the water located within soil pores. Bacteria are among the simplest and most plentiful organisms present in soil, and are found in many morphologies including spheres called cocci, rods called bacilli, and filamentous forms.

Fungal species, such as yeast and molds, are the second most abundant organisms in soil. They work to decompose and recycle dead organic matter. Microscopic filamentous fungi visually differ from other microorganisms, as they possess long and branched hyphae that release spores.

Direct observation of the relationships between these organisms is challenging, but can be achieved using a contact slide assay. This method is performed by submerging a glass slide into soil for several days and allowing the organisms and soil particles to adsorb to the slide surface.

The slide is then removed at an angle to prevent smearing of the surface. The microbes are fixed with acetic acid, and stained with Rose Bengal stain to enable visualization via light microscopy.

Now that you understand the principles behind the contact slide assay technique, lets take a look at the process in the laboratory.

First, collect surface garden soil and transfer the soil into the lab. Weigh 150 g of soil into the 2 separate containers. One container should be labeled as the treatment sample, which will be modified with nutrients to encourage rapid proliferation of organisms. Label the other as the control, which will be unchanged.

Calculate the water content in the soil, using the technique shown in this collection’s Determination of Moisture Content in Soil video. Based on this calculation, determine the amount of water in the soil on a dry weight basis. Now calculate the amount of water that needs to be added to give a 15% soil moisture content. This brings the moisture to field capacity, optimal for microorganism growth.

Measure the calculated amount of distilled water using a graduated cylinder. Pour the calculated volume of water into each container. Based on the previously determined dry weight of the soil, calculate the amount of glucose needed to achieve a final soil glucose concentration of 1% by mass, using the dry weight basis. Weigh this amount of glucose and add it to the treatment container only.

Weigh 200 mg of ammonium nitrate, then add it to the treatment container only. The ammonium nitrate serves as the nitrogenous nutrient source for the soil microbes. Mix the soil, glucose, and ammonium nitrate mixture in the container.

Next, label 4 clean microscope slides: two as treatment, and two as control. Insert the two treatment slides into the treatment soil container. Leave a section of each slide exposed above the soil surface, and ensure that there is a gap between the two slides.

Insert the two control slides into the control soil container in the same way. Cover the cups with plastic wrap, and secure with a rubber band. Puncture the plastic wrap several times to allow air transfer, but still prevent excessive evaporation.

Finally, weigh both cups, record their weight, and incubate them in a designated area at room temperature for seven days.

After the seven-day incubation, calculate the soil moisture content by weighing the soil cups. Determine if weight has been lost due to water evaporation, and replace the water if needed.

Remove the plastic wrap from the container, and remove the two slides from the soil by pressing each slide to an inclined position, and withdrawing so that the upper face of the slide is undisturbed.

Gently tap the slides to remove large soil particles. Using a damp paper towel, clean the lower face of the slides. Allow them to dry at room temperature in a fume hood. Once dry, pick up a slide with forceps, and immerse it into acetic acid for 1 to 3 min.

Rinse the top of the slide with a gentle stream of distilled water to remove excess acid. Repeat these steps for all slides. Allow the slides to air dry.

Support the slide on a staining rack over a container to catch excess dye. Using a dropper, gently cover the surface of each slide with phenolic Rose Bengal dye. Allow the slides to stain for 5 to 10 min, taking care to add more dye as needed to keep the slides wet. Gently rinse the slides with water to remove excess stain, and allow the slides to dry at room temperature.

Examine the slides on a light microscope, using an oil immersion objective. The treated soil will have more soil microbes.

The spatial interactions between fungal and bacterial organisms in typical soil samples can easily be visualized. Soil particles display dark irregular shapes.

Fungal organisms display thick filamentous hyphae, while actinomycetes display thin filamentous hyphae.

Bacteria are found as small cocci or rod shapes, typically in clumps, on soil particles or lining fungal hyphae.

The direct isolation of organisms from soil is important to the understanding of soil and environment characteristics.

Entomopathogenic nematodes are microscopic round worms that parasitize insects. While they are not visualized in the contact slide assay, they can be isolated from collected soil samples, as shown in this example.

First, the nematodes were baited in the soil using insects identified from visual examination. Nematodes were isolated from the dead insect bait, by placing the dead insects in a moist and dark environment and allowing the nematodes to migrate out into the surrounding water. The nematodes were then collected from the water, and analyzed.

Filamentous fungi are vital to soil health due to their role in nutrient recycling. The isolation and observation of filamentous fungi from soil was conducted in this example.

Soil samples were diluted with water, and added to separate sterile Rose Bengal streptomycin agar plates. The streptomycin prevented bacterial growth, and enabled fungal growth. Fungal colonies were counted and mounted to a glass slide using adhesive tape. The fungi were then imaged using a light microscope.

Soil microorganisms naturally break down components in soil, such as dead plants and organisms. Biodegradation and colonization of biodegradable plastic films was examined, as shown in this example.

Fungi were isolated from plastic films buried in soil for several months. The fungi were then tested individually for growth on plastic films. Plastic films were then incubated with the selected fungal strain with no growth media, in order to observe direct degradation of the plastic by the fungi.

You’ve just watched JoVE’s introduction to the contact slide assay for qualitative imaging of soil microbes. You should now understand how to prepare the contact slide, and visualize soil microbes. Thanks for watching!