革兰氏染色的细菌环境来源

Gram Staining of Bacteria from Environmental Sources
JoVE Science Education
Environmental Microbiology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Environmental Microbiology
Gram Staining of Bacteria from Environmental Sources

100,398 Views

09:31 min
February 23, 2015

Overview

资料来源: 实验室的博士伊恩胡椒和博士查尔斯称-亚利桑那大学
演示作者: 路易莎 Ikner

研究在环境微生物学中的频谱是广泛范围和应用潜力。这工作是否台秤与已知的细菌菌株,或在野外采集土壤或水样品中含有未知的细菌菌株,能够快速、 直观地识别可培养居民的利益的大导入到环境微生物学家甚至今天仍然与丰富的分子生物学技术可供使用。这个视频将展示这样一个技术,称为革兰氏染色。

Principles

革兰氏染色是古典和重要染色技术,仍然是广泛应用于环境微生物学家。类似于一个简单的污点,它允许评定的细菌细胞形态 (例如,球菌,棒,孢子前人),大小和安排 (例如,链或集群)。此外,它允许两个原则不同群体分化的细菌 — — 革兰氏阴性和阳性 — — 根据细胞壁成分和结构 (图 1)。

革兰氏染色是一个多步骤的过程。细菌涂片染色之前, 被制备板、 斜或肉汤的文化。涂片预科是干燥和固定在洁净的玻片上。主要结晶紫染色然后应用于固定涂片。结晶紫是积极组成的基本染色带电形成弱离子键与负电荷基团存在于细菌细胞壁的有色的离子 (生色团)。后轻轻冲洗幻灯片用水,克的碘应用,并且在细胞壁形成不溶性络合物结晶紫。结晶紫-碘络合物进一步结合主成分的细菌细胞壁肽聚糖。之后第二次的水冲洗,脱色简要地应用于涂片。革兰氏阴性细菌,结晶紫-碘络合物是用水洗掉在脱色的步骤中,保留紫斑的革兰氏阳性细菌。第三和最后水冲洗紧接着是复染剂的蕃为着色革兰阴性细菌粉红色或红色。

Figure 1
图 1。革兰氏阳性菌和革兰氏阴性菌细胞壁的比较。

Procedure

1.样品采集

  1. 微生物分析实验室收集土壤样品和运输。
  2. 在实验室中,权衡使用分析天平 10 g 的样品。
  3. 到 95 毫升的磷酸盐缓冲液稀释样品 1:10 (10 的部分土壤是相当于 5 个部分含水液体),和涡混合 (图 2,步骤 1)。
  4. 执行后续 1:10 稀释到至少 10-5克每毫升,土壤和扩散板中的两个或三个到低营养琼脂培养基 (例如R2A) 复制选定稀释 (图 2,步骤 2-3)。
  5. 板孵育一周在室温 (图 2,步骤 4)。
  6. 选择一个或两个殖民地为隔离和条纹上新鲜琼脂板 (图 3,步骤 1-3)。
  7. 条纹板孵育两到三天,在室温 (图 3,步骤 4)。

2.细菌涂片的制备

  1. 观察条纹板为孤立的殖民地。
  2. 准备每个涂片预科,蘸接种的循环转化为乙醇,火焰消毒,并将 1 至 2 loopfuls 的无菌蒸馏水放置到中心的预清洗的玻璃载玻片上。
  3. 消毒再如前面所述的接种环。一旦冷却,从单个孤立菌落取出少量的文化并混入水滴在幻灯片上 (涂片应类似于稀释的脱脂牛奶)。接种环必须冷却之前菌落分离。太热循环将导致殖民地和/或介质飞溅,这可能会导致细菌的雾化。一般来说,使用太热循环时,应用于琼脂或殖民地时,将听到”嘶嘶”的声音。不当冷却循环可能也导致效率较低的文化到幻灯片转让和畸变的细胞形态。
  4. 遍布的幻灯片测量大约 2.5 厘米 × 2.5 厘米,表面涂片并允许它空气干燥。它是重要的空气干燥,在层流条件下出现的。幻灯片不应该吹干,以免破坏涂片。此外,幻灯片不必须火焰干燥,以维持细胞形态。
  5. 干燥后,热修复涂片通过幻灯片迅速通过火焰 2-3 倍。幻灯片不应被固定在火焰中,以防止玻璃幻灯片畸变细胞形态和/或损害。

3.革兰氏染色

  1. 安全在一端使用干净晾衣夹幻灯片。
  2. 覆盖涂片有结晶紫 (初级污点) 按住 2 到 3 分钟。
  3. 细细的洗用蒸馏水幻灯片。小河的水应不针对涂片以防止损坏和/或脱离玻璃幻灯片。
  4. 盖克的碘与涂片为 2 分钟,按住,然后轻轻地洗净用水幻灯片。
  5. 脱色涂片,用 95%乙醇,直到污渍不再洗从幻灯片 (这通常以不超过 20 s 根据涂片的厚度),然后立即用蒸馏水冲洗。这一步关键是要避免过度脱色的幻灯片,可能会导致虚假的污点指定克 (克变量)。
  6. 将复染剂 (蕃) 添加到涂片来按住 30 s。然后轻轻地冲洗幻灯片用蒸馏水和抹乾用吸水纸。

4.镜观察幻灯片

  1. 观察使用低 (例如,4 X 或 10 X),(例如,40 X),高干的幻灯片和油浸 (100 X) 目标。为油浸泡、 添加油直接涂片。
  2. 革兰氏阳性菌和革兰阴性杆菌的土壤细菌的代表结果,请参阅图4和图5

Figure 2
图 2。稀释和传播电镀技术。请点击这里查看此图的大版本。

Figure 3
图 3。用条纹板技术的菌落分离。

Figure 4
图 4。革兰氏阳性菌土壤细菌金黄色葡萄球菌.

Figure 5
图 5。革兰阴性杆菌的土壤细菌大肠埃希氏大肠杆菌.

革兰氏染色允许快速可视化的细菌形态和种类繁多的环境样品的广泛细胞区别。染色细菌,均匀的涂抹是适用于玻璃的一面并使其干燥。热固涂片后, 结晶紫被应用。

脱色漂洗结晶紫从革兰氏阴性菌细胞,但不是革兰阳性细胞。第二次的染料,通常蕃,作为背景染色用于可视化革兰氏阴性菌细胞。一旦沾上,细胞可以评估为细胞形态、 大小和安排,如链或集群。

这个视频将演示如何编写环境样品,分离细菌物种发现其中,和对孤立的殖民地执行一种革兰氏染色

革兰氏染色允许广泛的结构分成两大部分细菌的分类: 革兰氏阳性菌和革兰氏阴性菌。虽然这两个类有潜在的磷脂质膜,细胞的壁的结构差别很大。革兰氏阳性菌的细胞壁主要由肽聚糖,是一种聚合物由糖和氨基酸组成的厚厚一层组成。革兰氏阴性菌细胞壁有肽聚糖,夹在第二次的脂质膜薄层。这外膜通常包含脂多糖。

带正电的结晶紫弱将绑定到-带负电的细菌细胞壁。克的碘形成不溶性的复合物与结晶紫染料,从而将其固定在细胞壁。

在脱色的步骤中,肽聚糖在革兰氏阳性细胞脱水,使其合同和陷阱结晶紫-碘复合物。在革兰氏阴性菌细胞中,脱色剂妥协的外膜,其气孔率的增加。这允许结晶紫-碘复合物被冲走。

现在你明白背后革兰氏染色的土壤细菌的原则,让我们看看在土壤细菌在实验室中执行的过程。

收集工作中的土壤样品之后, 把它带到实验室进行分析。用筛子,细化样品和权衡使用分析天平被筛土 10g。

样本的稀释到 95 毫升的磷酸盐缓冲液中,涡旋混合。执行另外 1 到 10 的稀释液,旋涡之间每个稀释。转让的至少 3 连续稀释,复制低营养琼脂糖盘子整除的数。

后乙醇火焰灭菌和冷却一根弯曲的玻璃棒攻到媒体,样品表面蔓延的板块。孵化在室温板。酝酿 3 至 5 天之后, 选择 30 到 300 离散殖民地最高稀释。无菌的接种环,选择隔离感兴趣的殖民地。

上一条新鲜的板殖民地的条纹。消毒条纹之间的回路,使连续条纹在之字形格局到板,以便随后的离散的单个菌落分离的每个部分。1 到 2 天在室温下孵育板。

要开始细菌涂片的制备,将附加到预清洗的玻璃幻灯片,操作简单方便的剪辑。为每个细菌涂片,清洗和火焰灭菌接种的循环。2 loopfuls 的无菌蒸馏水将放置幻灯片的中心。

后灭菌循环,再次,从孤立的殖民地,取出少量的文化并在幻灯片上水融合在一起。它是重要冷却循环再利用琼脂细胞壁主要的部分多次接触文化。涂片应类似于稀释的牛奶。让幻灯片在室温下晾干。干燥后,热修复涂片快速穿过火焰。

一旦干,吸管上涂片、 结晶紫,让坐 2-3 分钟仔细冲洗幻灯片用蒸馏水,目标是在直接的交流,朝向顶端的幻灯片上,让水轻轻地流下来。目的不是直接在涂片水流。

盖克的碘的幻灯片。2 分钟后轻轻地洗净用蒸馏水。脱色用 95%乙醇幻灯片,直到污渍不再冲走。立即用蒸馏水冲洗。这将限制过度脱色涂片。

添加蕃作为反染色涂片在 30 s。这会弄脏任何革兰氏阴性菌细胞存在。轻轻地用蒸馏水冲洗,用吸水纸弄干。用显微镜观察结果的幻灯片。使用低功耗的目的首先进行粗调整,找到之前转到小领域–意见的更高的放大倍数涂理想部分。

经过进一步成像和调整涂片有中等功率的目的,添加浸油直接涂片。石油被需要高功率目标,将提供最佳显微照片。革兰氏阳性细菌,将出现蓝色或紫色,革兰氏阴性菌细胞会变成红色或粉红色。除了细胞壁结构,阐明了产生显微形状和安排。

革兰氏染色定性研究细菌的能力是重要的科学领域种类繁多。

土壤是细菌分离与分析环境的来源之一。对于饮用水,必须修改样品制备。样品的自来水可以来自一个水龙头,并镀上促进增长的多样化、 异养细菌菌落的生长介质。对电镀 R2A 等介质上,过程是土壤程序几乎相同。

对于某些细菌鉴定技术参数是依赖感兴趣的细菌的细胞壁类型。在此示例中,脓毒症患者的血液进行了测试,并被发现藏有革兰氏阳性细菌。

使用此信息,物种特异性的肽核酸探针被选中,将绑定到细胞的 rRNA。这些探测器被绑定到被用于识别物种存在的荧光染料。

由于革兰氏阳性和阴性的细胞结构的基本差异,细菌有其他化合物结晶紫除了独特的回应。本实验试图孤立艰难梭菌、 革兰氏阳性菌,从粪便样品。环丝氨酸,抑制革兰氏阴性菌细胞的生长,加入琼脂平板。长在板的革兰氏阳性细胞被进一步孤立通过其他方法。

你刚看了革兰氏染色环境研究中心朱庇特的简介。现在,您应该了解过程和如何执行的技术和利用结果的好处。谢谢观赏 !

Applications and Summary

革兰氏染色用于环境和临床微生物学的许多子字段。水质量科学家可能用于革兰氏染色作为验证工具的水样中的粪便细菌检测。从土壤细菌菌株是革兰氏染色法为了进一步刻画可培养土壤群落。为环境微生物学家,革兰氏染色艾滋病细菌细胞壁结构的分类中。这,反过来,提供某一特定的微生物群落,抵御干燥和其他环境压力有关的一般能力的信息。革兰氏染色指定的知识也是重要的研究和发展的消毒剂和其他抗菌药物,革兰氏阳性细菌倾向于更有抵抗力的特定化学灭活比革兰阴性细菌。

临床微生物学申请的革兰氏染色法用于确认身份的细菌病原体以及传统的诊断方法。它也是很大的帮助时培养已失败,或不是一个选项。革兰氏染色的临床标本可以揭示病因的代理人,否则不可能被观察的存在。

Transcript

Gram staining allows for quick visualization of bacterial morphology and broad cellular distinction from a wide range of environmental samples. To stain bacteria, a uniform smear is applied to a glass side and allowed to dry. After heat-fixing the smear, crystal violet is applied.

A decolorizing agent rinses away the crystal violet from Gram-negative cells, but not Gram-positive cells. A second dye, typically safranin, is used as a background stain to visualize the Gram-negative cells. Once stained, the cells can be assessed for cell morphology, size, and arrangement, such as chains or clusters.

This video will demonstrate how to prepare an environmental sample, isolate the bacterial species found therein, and perform a Gram stain on the isolated colonies

Gram staining allows for the categorization of most bacteria into two broad structural classes: Gram-positive and Gram-negative. While both classes have an underlying phospholipid plasma membrane, the structure of the cellular wall varies greatly. The Gram-positive cell wall is primarily composed of a thick layer of peptidoglycan, which is a polymer that consists of sugars and amino acids. Gram-negative cell walls have a thinner layer of peptidoglycan, sandwiched between a second lipid membrane. This outer membrane typically contains lipopolysaccharides.

The positively-charged crystal violet binds weakly to the negatively-charged bacterial cell wall. Gram’s iodine forms an insoluble complex with the crystal violet dye, thereby fixing it in the cell wall.

During the decolorizing step, the peptidoglycan in the Gram-positive cells is dehydrated, causing it to contract and trap the crystal violet-iodine complexes. In Gram-negative cells, the decolorizing agent compromises the outer membrane, increasing its porosity. This allows the crystal violet-iodine complexes to be washed away.

Now that you understand the principles behind Gram staining soil bacteria, let’s see the process performed on soil bacteria in the laboratory.

After collecting a soil sample in the field, bring it into the laboratory for analysis. Refine the sample with a sieve, and weigh 10 g of the sieved soil using an analytical balance.

Dilute the sample into 95 mL of phosphate-buffered saline and vortex to mix. Perform additional 1 to 10 dilutions, vortexing between each dilution. Transfer aliquots of at least 3 successive dilutions, onto replicate low nutrient agarose plates.

Following ethanol-flame sterilization and cooling of a bent glass rod by tapping onto the media, spread the sample over the surface of the plates. Incubate the plates at room temperature. After incubating for 3 to 5 days, select the highest dilution with 30 to 300 discrete colonies. With a sterile inoculating loop, select colonies of interest for isolation.

Streak the colony onto one section of a fresh plate. Sterilizing the loop between streaks, make successive streaks in a zig-zag pattern onto each section of the plate to allow for subsequent isolation of discrete single colonies. Incubate the plates for 1 to 2 days at room temperature.

To begin preparation of bacterial smears, attach a clip to a pre-cleaned glass slide for ease of handling. For each bacterial smear, clean and flame-sterilize an inoculating loop. Place 2 loopfuls of sterile distilled water onto the center of the slide.

After sterilizing the loop again, remove a small amount of culture from an isolated colony, and mix with the water on the slide. It’s important to cool the loop before touching the culture by tapping an uninoculated portion of agar several times. The smear should resemble diluted milk. Allow the slide to dry at room temperature. After drying, heat fix the smear by quickly passing it through a flame.

Once dry, pipette crystal violet onto the smear, and let sit for 2 – 3 min. Carefully rinse the slide with distilled water by aiming the direct flow towards the top of the slide, allowing the water to gently flow down. Do not aim the water flow directly at the smear.

Cover the slide with Gram’s iodine. After 2 min, gently rinse with distilled water. Decolorize the slide with 95% ethanol until stain no longer washes away. Immediately rinse with distilled water. This will limit over-decolorizing the smear.

Add safranin as a counter-stain to the smear for 30 s. This will stain any Gram-negative cells present. Gently rinse with distilled water and blot dry with absorbent paper. Observe the resulting slide with a microscope. Use a low power objective first to make coarse adjustments and find an ideal portion of the smear before moving on to the smaller field-of-views of the higher magnifications.

After further imaging and adjusting the smear with a medium power objective, add immersion oil directly to the smear. The oil is needed for high power objectives that will provide the best micrographs. Gram-positive bacteria will appear blue or purple in color, while Gram-negative cells will be red or pink. In addition to cell wall structure, shape and arrangement are elucidated from the resulting micrographs.

The ability of Gram staining to qualitatively study bacteria is important to a wide range of scientific fields.

Soil is just one of the environmental sources from which bacteria can be isolated and analyzed. For drinking water, sample preparation must be modified. Samples of tap water can be drawn from a faucet, and plated onto growth media that facilitates the growth of diverse, heterotrophic bacterial colonies. Upon plating onto a medium such as R2A, the process is nearly identical to the soil procedure.

For certain bacterial identification techniques, the parameters are dependent on the cell wall type of the bacteria of interest. In this example, a septic patient’s blood was tested and was found to be harboring Gram-positive bacteria.

With this information, species-specific peptide nucleic acid probes were chosen that would bind to the cells’ rRNA. These probes were bound to fluorescent dyes that were used to identify the species present.

Because of the fundamental differences in Gram-positive and -negative cellular structure, bacteria have unique responses to other compounds besides crystal violet. This experiment sought to isolate Clostridium difficile, a Gram-positive bacterium, from fecal samples. Cycloserine, which inhibits the growth of Gram-negative cells, was added to the agar plate. The Gram-positive cells that grew on the plate were further isolated via other methods.

You’ve just watched JoVE’s introduction to Gram staining for environmental studies. You should now understand the benefits of the process and how to perform the technique and utilize the results. Thanks for watching!

Tags