资料来源: 实验室的博士伊恩胡椒和博士查尔斯称-亚利桑那大学
演示作者: 路易莎 Ikner
细菌是地球上最丰富的生命形式。他们发现在每一个生态系统,对日常生活至关重要。例如,细菌影响什么人吃,喝,和呼吸,还有实际上更细菌细胞内一个人的身体比哺乳动物细胞。由于细菌的重要性,它是最好研究特定种类的细菌在实验室。要做到这一点,细菌生长在受控条件下纯文化,意思只有一种类型的细菌正在审议中。细菌生长迅速在纯培养和细胞的数量在短时间内急剧增加。通过测量细胞人口的增长率增加随着时间推移,”生长曲线”将被开发。旨在利用或接种细菌分离,例如改善植株的生长、 增加生物降解的有毒有机物,或产生抗生素或其他天然产品在工业规模的已知的数字时,这非常重要。
细菌繁殖发生通过二进制裂变,在其中一个细菌细胞分裂,并成为两个细胞 (图 1)。细胞分裂所需的时间称为平均的一代人的时间或加倍的时间,这是对双细胞数目所需的时间。
图 1。细胞分裂指数。每个细胞分裂结果的单元格数目增加一倍。在低细胞数量的增加不是很大;然而经过几代,细胞增加爆炸。N 次分裂之后,有 2n个单元格。
要理解和定义特定微生物的生长,他们放在瓶里,在那里的养分供应和环境条件控制。如果液体介质供应增长和有利于增长的环境参数所需的所有营养物质,可以作为时间函数的增长曲线,测量人数的增加。几个不同的生长阶段可以观察内生长曲线 (图 2)。这些包括滞后期、 指数或日志相、 固定相和死亡阶段,每一种都与特定的生理变化 (表 1)。
阶段 | 特点 | ||
延滞期 | 经济增长缓慢或缺乏带来的细胞培养条件下的生理适应或稀释 exoenzymes 由于初始低细胞密度增加。 | ||
指数或登录阶段 | 最优的增长速度,在离散的时间间隔称为均值生成时间双哪个单元格编号。 | ||
固定相 | 生长 (细胞分裂) 和死亡的细胞互相没有净增加细胞数量保持平衡。减少的增长率通常是由于缺乏营养和 (或) 有毒废物成分的集结。 | ||
死亡阶段 | 病死率超过增长率造成活细胞净损失。 |
表 1。细菌生长的四个阶段。
图 2。典型的生长曲线,进行数量的细菌种群。比较形状的曲线基于集落形成单位 (CFUs) 与光密度,特别是在死亡阶段。区别在于,死细胞仍然产生浑浊,但不能形成可行的殖民地,在文化。
总体而言,至关重要的经常来确定给定的细菌分离的细菌的生长动力学为了解目前在液体培养基中细菌细胞的数量。有不同的方法来测量液体介质,包括使用比色分光光度计和连续稀释法电镀的浊度测量中的生长。浊度测量依靠更多的细胞呈现在液体介质中,更浑浊液体成为事实。连续稀释法电镀涉及测定可以形成可行的殖民地上固体培养,称为文化”菌落形成单位”测量液体介质中的单元格数目。但是请注意,这种电镀化验只可以用于细菌是,事实上,可培养。
1.收集细菌培养整除数
2.连续稀释法
大肠杆菌文化 | 稀释需要和管 # | ||||||
A | B | C | D | E | F | G | |
T0 | 10-1 | 10-2 | |||||
T1 | 10-1 | 10-2 | |||||
T2 | 10-1 | 10-2 | 10-3 | ||||
T3 | 10-1 | 10-2 | 10-3 | 10-4 | |||
T4 | 10-1 | 10-2 | 10-3 | 10-4 | 10-5 | ||
T5 | 10-1 | 10-2 | 10-3 | 10-4 | 10-5 | 10-6 | |
T6 | 10-1 | 10-2 | 10-3 | 10-4 | 10-5 | 10-6 | 10-7 |
T7 | 10-1 | 10-2 | 10-3 | 10-4 | 10-5 | 10-6 | |
T8 | 10-1 | 10-2 | 10-3 | 10-4 | 10-5 | 10-6 |
表 2。稀释系列所需的每个大肠杆菌文化。
3.电镀
大肠杆菌文化 | 稀释待镀 | ||
T0 | 10-1 | 10-2 | 10-3 |
T1 | 10-1 | 10-2 | 10-3 |
T2 | 10-2 | 10-3 | 10-4 |
T3 | 10-3 | 10-4 | 10-5 |
T4 | 10-4 | 10-5 | 10-6 |
T5 | 10-5 | 10-6 | 10-7 |
T6 | 10-6 | 10-7 | 10-8 |
T7 * | 10-5 | 10-6 | 10-7 |
T8 * | 10-4 | 10-5 | 10-6 |
*低稀释考虑到低人口由于死亡阶段。
表 3.电镀大肠杆菌文化协议。
4.计数殖民地和计算均值生成时间
测量细菌的增长速度是一种基本的微生物技术,和在基础科学农业和工业应用中得到了广泛采用。
细菌当中最丰富的生命形式在地球上,存在于每一个生态系统,包括人的身体。某些细菌的种类也是基因高度温顺,并且已被利用作为研究模型,或以生产天然或人工合成的产品,在产业规模。然而,并不是所有的细菌物种可以在实验室中培养。对于那些可以的人,一个重要特征是乘法,或”生长动力学”率。
测量细菌培养生长速率可以告知科学家关于他们的生理和代谢功能,而且也可用于获取为下游应用细菌准确的细胞数。
这个视频将介绍细菌生长速率分析背后的原则、 证明协议表征增长率与”生长曲线”,最后,探讨测量细菌生长动力学的几个环境科学应用。
细菌通常是无性生殖,乘以简单二进制裂变哪里一个父母细胞分裂成两个完全相同的子细胞。营养素是可用的丰度和环境参数,如温度都有利于经济增长的有利的生长条件,相乘的速度远远超过了病死率。这个结果在呈指数级增长。
通过测量的一种文化中的细菌量作为时间的函数,可以得到生长曲线。生长在最佳条件下的液体培养细菌产生与形状特性,可以分为不同阶段的生长曲线。该曲线从开始与”滞后期”,当增长是缓慢的而细菌成为适应文化条件。接下来是”日志”指数相”,当细菌体验指数增长。增长最终停滞一旦养分耗尽和废物产品积累,从而导致”固定相”。最后,一旦率的乘积细胞死亡的速度所取代,文化就进入”死亡阶段”。
要构建生长曲线,瓶中的液体培养的细菌数计数不同时间点在一定时期内培养。可以通过许多不同的方法获得细菌计数。一个常见的方法是测量光学密度-或”OD”-600,这是细菌溶液吸收的光波长为 600 nm。
另一种方法是确定的”造血”或菌落形成单位,每毫升的文化。由于细菌生长的克隆性质,一个细菌中一种文化可以从理论上扩大到一个可观察到殖民地琼脂板上。通过电镀系列的稀释液细菌培养达到细菌浓度在那里个人、 离散殖民地可以观察到,一种称为”连续稀释法电镀”方法,菌落计数可以用于背计算每毫升菌体浓度的菌落。
既然您了解了如何分析细菌的生长,让我们去通过一项议定书进行纯培养的既定的细菌模型,大肠埃希氏大肠杆菌,生长曲线分析使用稀释平板法。
时间的前一天点集合,接种 20 毫升的预消毒的胨大豆肉汤或 TSB,与大肠杆菌一单菌落 50 毫升瓶。
孵育一夜之间在 37 ° C,用颤抖的文化。为大肠杆菌,这将导致大约 10 固定相人口9 CFU/mL。
第二天,接种 100 μ L 的过夜培养成 250 毫升的 TSB 500 毫升瓶中。调匀。这将产生大约 4 x 105 CFU/mL 稀释的文化。存储到文化管 5 毫升的这种稀释的文化。这是从时间点 0 或 T0整除的数。冷藏立即在 4 ° c。
孵化在 37 ° C,用颤抖的文化剩余的卷。在每小时之后达 8 小时,从文化收集 5 毫升。指定这些样本 T1到 T8,并保存所有的他们在 4 ° C,直到使用。
对实验的一天,从冰箱取出大肠杆菌时间点整除数及放在冰上。使用无菌微量离心管,每个都有 900 μ L 无菌生理盐水,可以设置为按下表每个分装稀释系列。
混合 T0文化很好地轻轻旋涡,然后添加制 1 在 10 或 10-1稀释其稀释系列管 A 100 μ L。涡流管 A 混合,和使用新鲜针提示,将 100 μ L 的管 A 添加到管 B,使 1-在-100 或 10-2稀释。
重复该过程为每个区域性分装和作出适当稀释系列根据表 2。一旦取得了所有时间点样品的稀释系列,有适当数量的无菌胨大豆琼脂板准备细菌电镀。
3 稀释度的每个时间点文化将镀一式三份,如下表。因此标签板。然后,移液器 100 μ L 的每个适当稀释的文化上的各自琼脂板中心。火焰-消毒”L”形的玻璃棒,酷通过触摸到从接种,琼脂杆和立即传遍琼脂表面的液体。请注意,传播延迟可能会造成细菌过度生长的接种点。
继续电镀每个稀释系列为所有 9 点文化,火焰灭菌玻璃沿杆每个稀释系列之间的时间。
一旦板已获准干为几分钟,反转,一夜之间就将他们放入 37 ° C 的孵化器。在此期间的增长后, 板可以存储在 4 ° c。
后的稀释平板的隔夜孵化,检查它们污染和均匀性的殖民地。每个时间点文化,挑,有 30-300 菌落每板之间的稀释。数每个一式三份,稀释板上的殖民地。
使用每个稀释和稀释倍数的殖民地的平均次数,计算细菌在原始文化中 CFU/mL 的每个时间点的浓度。例如,如果有从一式三份的平均 30 殖民地有板集获得从 0.1 毫升的 10-4,或 1 在 10,000,稀释,然后将 30 除以 0.1 毫升乘以 10000,或 300 万 CFU/mL。
用细菌浓度计算每个时间点,绘制图中 CFU/mL,细菌浓度与时间以小时为单位的基地 10 日志。从图中,确定日志发展的阶段,原始的细菌培养和选择两个时间点内的日志阶段,这些时间点的第一列为 t = 0。计算方程 X 均值生成时间等于 2 权的n乘以 X0其中 X 是时间 t,X0的细菌浓度是初始浓度在 t = 0,n 是数代所间隔两个时间点。
例如,假设 X0是温 1000 CFU/毫升左右,并在 t = 6 h,浓度是 16,000 CFU/mL。我们使用方程,得到 6 小时,给 6 除以 4 或 1.5 h,每一代一代人时间内已发生 4 代。
细菌生长动力学的测量是许多应用研究、 农业或生物工程目的的根本。
了解细菌生长速率的一个用途是培养的允许量准确的细菌需要获得接种另一种文化或介质。例如,某些作物,如豆科植物,需要种植与共生细菌称为殖民形成根瘤的植物的根和”修复”将大气中的氮转化为可以被植物利用的氨氮的根瘤菌。农业应用,已知的量的根瘤菌被添加到基于泥炭的碳中的介质,然后用于接种豆科植物的种子,从而建立植物和细菌共生关系。
增长分析也可以用于识别细菌的种类,可以降解工业废物并可能生成有价值的副产品。在此示例中,研究人员调查了生长培养基与黑液,从木材制浆和造纸,废物产品如何影响环境的微生物菌株的生长。
这种细菌不仅彰显增强的增长与黑液,还显示一个”油水”的增长模式,表明这种细菌能代谢的黑液中的多个碳源的存在。黑液的单个组件可以然后提取了更详尽的增长分析。
最后,成长率测量也是有用的表征设计出来的用于特定的工业用途,例如,为治理石油污染的细菌。在这里,科学家创建含有酶降解石油烃类组分的转基因细菌菌株。增长进行分析,例如,要验证工程的菌增加了生长速度比正常细菌存在的有毒的碳氢化合物,指示将允许工程的菌,以执行其污染清理功能的改进的容忍。
你刚看了朱庇特的视频分析细菌生长速率与生长曲线。现在,您应该了解细菌培养、 如何执行实验获得使用时间点集合和连续稀释法电镀的生长曲线和如何增长分析可以应用于研究和工业用途的不同生长阶段。一如既往,感谢您收看 !
之后连续稀释法电镀实验,得到以下数据。在这里指定的指数增长的开始作为时间 t = 0,细菌细胞的初始浓度是温 1000 CFU/毫升左右。在时间 t = 6 h,细胞浓度是 16,000 CFU/mL。
现在,X = 2n x X0
地点: X0 = 初始浓度的细胞 = 温 1000 CFU/毫升左右
X = 时间 t 后的细胞浓度 = 16,000 CFU/mL
n = 代数目
16,000 = 2n x 1,000
2n = 16
登录10 2n = 日志10 16
n x 0.301 = 1.204
n = 1.204 = 4
0.301
四代时间在 6 小时所以
意思是一代人时间 = 6/4 = 1.5 h。
图 4。包含固氮菌根瘤中。
知识的培养基中细菌的生长动力学和细菌数量从是重要的研究和商业的角度考虑。在研究中,它往往是关键是要知道中的细菌数量的样本,所以实验是可以复制的如果需要以确切的相同数字。例如,在试验期间菌剂添加到情节的土壤中,最低 104 CFU 需要添加每克土壤得到预期的效果,如加强土壤有毒有机污染物的生物降解。另一个例子是商业化生产的根瘤菌接种、 一例哪里的根瘤菌 (进入与植物的根共生关系的细菌) 的已知的数字浸渍入泥炭的碳排放介质 (图 4)。媒介是然后用来接种豆类种子,以提高生物固氮 (即,分子氮转化为可以利用生物养分的有机形式)。
生长动力学可用于评估是否适应特定株细菌代谢某些底物,如工业废物或油污染。例如,细菌转基因来清理漏油,可以种植存在复杂的碳氢化合物,以确保他们的成长,不会在石油的毒性作用被压抑了。同样,从细菌与混合物的工业废品产生的增长曲线的形状与边坡可以告知科学家细菌是否能代谢的特殊物质,和多少潜在的能量来源的细菌可以发现在废物的混合物。
Measuring the growth rate of bacteria is a fundamental microbiological technique, and has widespread use in basic research as well as in agricultural and industrial applications.
Bacteria are among the most abundant life forms on Earth, being present in every ecosystem, including the human body. Certain bacterial species are also genetically highly tractable, and have been harnessed as research models or to produce natural or synthetic products at the industrial scale. However, not all bacterial species can be cultured in the lab. For those that can, an important characteristic is the rate of multiplication, or “growth kinetics”.
Measuring a bacterial culture’s growth rate can inform scientists about their physiological and metabolic functions, and is also useful for obtaining an accurate cell number of the bacteria for downstream applications.
This video will introduce the principles behind bacterial growth rate analysis, demonstrate a protocol for characterizing growth rate with a “growth curve”, and finally, explore several environmental science applications for measuring bacterial growth kinetics.
Bacteria generally reproduce asexually, multiplying by simple binary fission where one parental cell divides into two identical daughter cells. Under favorable growth conditions where nutrients are available in abundance and environmental parameters such as temperature are all conducive to growth, the rate of multiplying far exceeds the death rate. This results in exponential growth.
By measuring the amount of the bacteria in a culture as a function of time, a growth curve can be obtained. Growing bacteria in a liquid culture under optimal conditions produces a growth curve with a characteristic shape that can be divided into various phases. The curve begins with a “lag phase”, when growth is slow while the bacteria become acclimated to the culture conditions. Next is the “log” or “exponential phase”, when the bacteria experience exponential growth. Growth eventually stalls once nutrients become depleted and waste products accumulate, resulting in a “stationary phase”. Finally, once the rate of multiplying is overtaken by the rate of cell death, the culture enters the “death phase”.
To construct a growth curve, bacterial numbers in a flask of liquid culture are counted at different time points over a certain period of culturing. Bacterial counts can be obtained by a number of different methods. One common approach is to measure optical density – or “OD” – 600, which is the bacterial solution’s absorbance of light at a wavelength of 600 nm.
Another method is to determine the “CFU”, or colony forming units, per milliliter of the culture. Due to the clonal nature of bacterial growth, one bacterium in a culture can theoretically expand into one observable colony on an agar plate. By plating a series of dilutions of a bacterial culture to reach a bacterial concentration where individual, discrete colonies can be observed, a method called “serial dilution plating”, the colony count can be used to back-calculate the bacterial concentration in terms of CFU per mL.
Now that you understand how bacterial growth can be analyzed, let’s go through a protocol for conducting growth curve analysis on pure cultures of a well-established bacterial model, Escherichia coli, using the serial dilution plating method.
One day before time point collection, inoculate 20 mL of pre-sterilized trypticase soy broth, or TSB, medium in a 50-mL flask with a single colony of E. coli.
Incubate the culture overnight at 37 °C with shaking. For E. coli, this would result in a stationary phase population of approximately 109 CFU/mL.
The following day, inoculate 100 μL of the overnight culture into 250 mL of TSB in a 500-mL flask. Mix thoroughly. This produces a diluted culture of approximately 4 x 105 CFU/mL. Store 5 mL of this diluted culture into a culture tube. This is the aliquot from time point 0, or T0. Refrigerate immediately at 4 °C.
Incubate the remaining volume of the culture at 37 °C with shaking. At every hour afterwards for up to 8 h, collect 5-mL aliquots from the culture. Designate these samples T1 to T8, and store all of them at 4 °C until use.
On the day of the experiment, remove the E. coli time point aliquots from the refrigerator and keep them on ice. Use sterile microfuge tubes, each with 900 μL of sterile saline, to set up a dilution series for each aliquot according to the following table.
Mix the T0 culture well by gently vortexing, then add 100 μL to Tube A of its dilution series, making a 1-in-10, or 10-1 dilution. Vortex Tube A to mix, and using a fresh pipette tip, add 100 μL of Tube A to Tube B, making the 1-in-100, or 10-2 dilution.
Repeat the process for each culture aliquot and make the appropriate dilution series according to Table 2. Once the dilution series for all the time point samples have been made, have the appropriate number of sterile trypticase soy agar plates prepared for bacterial plating.
3 dilutions of each time point culture will be plated in triplicate according to the following table. Label the plates accordingly. Then, pipette 100 μL of each appropriately diluted culture onto the center of the respective agar plate. Flame-sterilize an “L”-shaped glass rod, cool by touching the rod to the agar away from the inoculum, and immediately spread the liquid over the agar surface. Please note that a delay in spreading could result in bacterial overgrowth at the spot of the inoculation.
Continue plating each dilution series for all 9 time point cultures, flame-sterilizing the glass spreading rod between each dilution series.
Once the plates have been allowed to dry for a few minutes, invert and place them into the 37 °C incubator overnight. After this period of growth, plates can be stored at 4 °C.
After overnight incubation of the dilution plates, examine them for contamination and uniformity of colonies. For each time point culture, pick a dilution for which there are between 30-300 colonies per plate. Count the number of colonies on each of the triplicate plates for that dilution.
Using the mean number of colonies for each dilution and the dilution factor, calculate the concentration of bacteria in the original culture at each time point in CFU/mL. For example, if there are on average 30 colonies from the triplicate plate set obtained from 0.1 mL of the 10-4, or 1-in-10,000, dilution, then there would be 30 divided by 0.1 mL multiplied by 10,000, or 3 million CFU/mL.
Using the bacterial concentration calculated for each time point, plot a graph of the base-10 log of the bacterial concentrations, in CFU/mL, against time in hours. From the graph, identify the log phase of growth of the original bacterial culture and pick two of the time points within the log phase, designating the first of these time points as t = 0. Calculate the mean generation time using the equation X equals 2 to the power of n multiplied by X0 where X is the bacterial concentration at time t, X0 is the initial concentration at t = 0, and n is the number of generations that has elapsed between the two time points.
For example, suppose X0 is 1,000 CFU/mL, and at t = 6 h, the concentration is 16,000 CFU/mL. Using the equation, we obtain that 4 generations have occurred within 6 h, which gives a generation time of 6 divided by 4 or 1.5 h per generation.
Measurement of bacterial growth kinetics is fundamental to many applications for research, agriculture, or bioengineering purposes.
One use for knowing the bacterial growth rate is to permit an accurate amount of a bacterial culture to be obtained to inoculate another culture or medium. For example, certain crops, such as legumes, need to be grown with symbiotic bacteria known as rhizobia that colonize the plants’ roots to form nodules and “fix” nitrogen – converting atmospheric nitrogen into ammonia which can be utilized by the plant. For agricultural applications, a known amount of rhizobia is added to a peat-based carbon medium, which is then used to inoculate legume seeds to establish the plant-bacterial symbiosis.
Growth analysis can also be used to identify bacterial species that can degrade industrial waste and possibly generate valuable byproducts. In this example, researchers investigated how growth media supplemented with black liquor, a waste product from wood pulping and paper production, affected the growth of an environmental microbial isolate.
The bacteria not only demonstrated enhanced growth with black liquor, but also showed a “diphasic” growth pattern, indicating the presence of more than one carbon source in black liquor that the bacteria can metabolize. Individual components of black liquor could then been extracted for more detailed growth analysis.
Finally, growth rate measurements are also useful for characterizing bacteria that have been engineered for particular industrial purposes, for example, for remediation of oil pollution. Here, scientists created genetically engineered bacterial strains that contain enzymes to degrade the hydrocarbon components of oil. Growth analysis was performed, for example, to verify that the engineered bacteria has increased growth rate than normal bacteria in the presence of the toxic hydrocarbons, indicating improved tolerance that will allow the engineered bacteria to perform their pollution cleanup function.
You’ve just watched JoVE’s video on analyzing bacterial growth rates with growth curves. You should now understand the different growth phases of bacterial cultures, how to perform an experiment to obtain a growth curve using time point collection and serial dilution plating, and how growth analysis can be applied to research and industrial purposes. As always, thanks for watching!
Related Videos
Environmental Microbiology
359.2K 浏览
Environmental Microbiology
126.4K 浏览
Environmental Microbiology
100.2K 浏览
Environmental Microbiology
42.2K 浏览
Environmental Microbiology
57.3K 浏览
Environmental Microbiology
28.8K 浏览
Environmental Microbiology
44.5K 浏览
Environmental Microbiology
40.4K 浏览
Environmental Microbiology
47.8K 浏览
Environmental Microbiology
29.5K 浏览
Environmental Microbiology
39.3K 浏览
Environmental Microbiology
40.7K 浏览
Environmental Microbiology
184.2K 浏览
Environmental Microbiology
295.9K 浏览
Environmental Microbiology
13.8K 浏览