资料来源: 加州大学欧文分校化学系 Vy 先生和 Faben
本实验将演示如何正确地进行氏反应。通过合成镁和烷基卤化物的氏试剂, 可以证明有机金属试剂的形成。为了证明氏试剂的常见用途, 将通过形成一个新的 c-c 键来对羰基进行亲核攻击以产生二次酒精。
氏反应是一种在烷基/芳基卤化物和羰基 (如醛、酮或酯) 之间形成碳碳键的方法。这个诺贝尔奖得主的化学包括两个步骤: 氏试剂的形成和随后的氏添加到羰基上, 以构建一个新的碳碳键。氏试剂是一种金属有机化合物, 特别是一种 organomagnesium 化合物。氏试剂的合成需要烷基或芳基卤化物 (氯化物、溴或化) 和镁。在这一步, 亲 (亲是电子缺陷和接受电子) 烷基卤化物转化成亲核 (核是电子丰富和捐赠电子) carbanion 样化合物。氏反应的第二步是在羰基上加入亲核的氏试剂。在这一步之后, 形成一种新的碳碳键, 将羰基转化为酒精。在无水分条件下执行两个步骤是很重要的, 否则氏试剂将会与水发生反应, 而不需要氏或 c-c 键形成结果。氏反应是一个重要的和广泛使用的工具, 允许合成化学家采取任何烷基或芳基卤化物和转化成一个 organomagnesium 化合物, 可用于建设碳碳键。
1. 氏试剂的形成
2. 亲核加入
氏反应是有机合成碳-碳键形成的有用工具。
这个反应是在一个多世纪以前被一个名叫维克多氏的法国化学家发现的, 他在1912年获得了诺贝尔奖。
氏反应由两个步骤组成。第一步是反应 organohalide 与镁金属, 通常以转弯的形式存在。这导致原位形成一个 organomagnesium 卤化物, 又称氏试剂。
第二步是该试剂与含羰基化合物如醛、酮或酯的反应, 并取决于所使用的化合物, 二级或三级酒精, 由有机部分组成的试剂和含羰基化合物, 产生。
在这段视频中, 我们将展示一个 step-by 步骤的协议, 用于制备丙溴化物, 这是化学实验室中常用的氏试剂。这将遵循的程序, 反应这个试剂与反式肉桂醛, 以获得第二酒精。最后, 我们将研究这一反应的几个应用。
在加入试剂之前, 先将50毫升的火干瓶和搅拌棒除去所有的水, 然后在氮气的气氛下冷却到室温。这是至关重要的, 因为氏试剂是非常敏感的水分。
接下来, 添加烘炉镁车削和一些碘晶体, 这将促进反应的启动, 从金属中除去任何氧化镁涂层。随后, 加入24毫升无水呋喃。
将烧瓶放在冰水浴中以减轻产生的热量, 并通过搅拌, 慢慢地通过注射器添加烯丙基溴。然后从冰水浴中取出烧瓶, 让反应混合物达到室温.为保证反应的完成, 使用气相色谱法监测溴化丙烯的用量。
一旦氏反应准备好使用, 准备下一步的反应。加入一个火焰干200毫升的烧瓶和搅拌棒反式肉桂醛和30毫升无水呋喃, 并在氮气气氛下搅拌。这是重要的, 因为在存在的水分氏试剂将被销毁, 并不会与含羰基化合物的反应。
将反式-肉桂醛溶液搅拌在0度, 并将 double-tipped 针插入顶部, 另一端插入含有氏试剂的烧瓶的顶空。从肉桂醛中取出氮气填充的气球, 并在氏烧瓶中添加一条氮气线。
用氮气线施加正压, 将氏试剂转移到肉桂醛中。添加完毕后, 用气球附件代替 double-tipped 针, 除去冷水浴, 室温搅拌。为了确定反应是否完成, 使用薄层色谱法监测反式-肉桂醛的消耗量。
一旦确定反应是完全的, 冷却混合物到0度, 并且, 当搅动时, 仔细地增加30毫升饱和水氯化铵解答和50毫升乙酸乙酯.使用分漏斗分离层, 并提取三50毫升醋酸乙酯的水层。结合分漏斗中的有机萃取物, 用50毫升饱和水氯化钠溶液冲洗。
通过加入大约500毫克的硫酸镁, 除去固体中的水分, 然后用额外的乙酸乙酯冲洗。将混合料在减压下浓缩, 用闪光柱层析法提纯粗料。
为了验证该产品的结构, 在0.5 毫升氘溶剂中溶解2毫克的干物质, 并通过质子核磁共振进行分析。
现在, 我们已经看到了一个例子实验室程序, 让我们看看一些有用的应用氏反应。
Phorboxazole 是一种天然的产品, 显示出强大的抗菌, 抗真菌和增殖的性质, 促使努力开发合成程序, 为其制造。氏反应是用于这一合成的关键步骤, 其中一个亚-甲基溴化物攻击内酯羰基形成 hemiketal 中间体.
例如, 如果基板是一个受阻羰基, 氏试剂可以作为基, deprotonating 基板, 并产生一个醇。在工作时, 开始的材料被恢复。或者, β-氢化物消除反应可能发生, 导致羰基的减少到酒精。
为了抑制这些副反应, 在反应中加入了镧 (III) 氯化铈等稀土盐, 其中盐类与羰基氧配合, 增强了羰基 electrophilicity。这反过来使氏试剂添加到羰基, 以提供所需的产品和降低不需要的产品的速度。
例如, 在 cyclopentylmagnesium 氯和 cyclohexenone 之间的反应中, 如果不添加铈三氯化物, 则β-氢化物消除产品占主导地位。然而, 当在铈盐存在下进行相同的反应时, 所需的添加产物在高产量下得到。
你刚刚看了朱庇特对氏反应的介绍。你现在应该了解氏反应的原理, 如何进行实验, 以及它的一些应用。谢谢收看!
纯化产品应具有以下1h 核磁共振谱: 1h 核磁共振δ 7.23-7. 39 (m, 5H), 6.60 (d, J = 16.0 Hz, 1H), 6.23 (dd, J = 6.4 Hz, 1H), 5.84 (m, 1H), 5.14-5. 20 (m, 2H), 4.35 (q, J = 6.4 Hz, 1H), 2.37-2. 43 (m, 2H),1.9 (br s, 1H)。
本实验演示了如何合成芳基/烷基卤化物中的氏试剂, 以及如何使用氏试剂在羰基化合物上进行亲核添加, 以构建新的碳碳键。
氏反应在合成化学领域得到了广泛的应用, 在大学研究实验室、国家实验室和制药企业中都有使用。简单的氏试剂是商业可用的, 但往往是独特的和专门的氏试剂是必需的。氏反应允许合成化学家从芳基或烷基卤化物中获取必要的化合物。除了在羰基上执行亲核添加物外, 氏试剂还可作为核与大量其他亲化合物结合使用。一个特殊的氏试剂的例子, 可以发现在合成的 phorboxazole a, 天然产品, 展品强大的抗菌, 抗, 和抗的性质。
图 1.Phorboxazole 一个
另一种生成氏试剂的方法是通过镁-卤素交换。这种方法使用预制氏试剂代替镁来产生理想的氏。用于镁卤交换的最常用的氏试剂是i-PrMgCl 和i-PrMgBr, 两者都是商用的。镁卤素交换显示了广泛的功能组公差1。因此, 这种方法已被证明是一种有用的方式产生高功能化的氏试剂。烷基/芳基卤化物与功能基团, 通常反应与氏试剂可用于制造氏试剂通过镁卤交换。在镁卤交换过程中, 酯、腈和烷基氯化物保持不变。此外, 化可以有选择地进行镁卤素交换在存在的溴。
图 2.镁卤交换
氏试剂通常充当核和添加到羰基化合物, 但副反应可以发生取决于性质的氏和羰基使用。一个共同的副反应是一个伍尔茨耦合, 其中氏试剂夫妇本身形成一个二聚体。阻笨重的 Grignards 或羰基能使亲核添加具有挑战性。潜在的结果与阻笨重的基质是没有添加或减少羰基 viaΒββ-氢化物转移。enolizable 质子在羰基中的存在也会由于竞争性的羰基 enolization 而使亲核增加具有挑战性。抑制这些副反应和促进亲核添加的常用方法是使用镧系盐, 特别是 CeCl3作为添加剂。镧系稀土盐是 oxophilic (吸引氧), 因此它们协调的羰基氧和增加 electrophilicity 的羰基。预计在 cyclohexenone 中加入环氯化镁会给出三乙醇, 而羰基则减少为二级醇。通过添加 LaCl3, 可以将此副作用抑制为所需的氏加法。
图 3.稀土盐促进氏添加
The Grignard reaction is a useful tool for the formation of carbon-carbon bonds in organic synthesis.
This reaction was discovered more than a century ago by a French Chemist named Victor Grignard for which he was rewarded a Nobel Prize in 1912.
The Grignard reaction consists of two steps. The first step is reacting an organohalide with magnesium metal, usually present in the form of turnings. This leads to in situ formation of an organomagnesium halide A.K.A. Grignard reagent.
The second step is the reaction between this reagent and a carbonyl-containing compound like aldehyde, ketone, or ester, and depending on the compound used, a secondary or tertiary alcohol, composed of organic portions from both the reagent and the carbonyl-containing compound, is produced.
In this video, we will show a step-by-step protocol for preparing allylmagnesium bromide, a frequently used Grignard reagent in chemistry labs. This will be followed by the procedure for reacting this reagent with trans-cinnamaldehyde to obtain a secondary alcohol. Lastly, we will look at a couple of applications of this reaction.
Prior to addition of the reagents, flame-dry a 50-mL flask and stir bar to remove all traces of water, then cool to room temperature under an atmosphere of nitrogen. This is critical as Grignard reagents are very sensitive to moisture.
Next, add oven-dried magnesium turnings and a few crystals of iodine which will facilitate initiation of the reaction by removing any magnesium oxide coating from the metal. Subsequently, add 24 mL of anhydrous THF.
Place the flask in an ice-water bath to mitigate the heat produced, and with stirring, slowly add allyl bromide via syringe. Then remove the flask from the ice-water bath and allow the reaction mixture to reach room temperature. To ensure completion of the reaction, use gas chromatography to monitor the consumption of allyl bromide.
Once the Grignard reaction is ready for use, prepare for the next step in the reaction. Add to a flame-dried 200-mL flask and stir bar trans-cinnamaldehyde and 30 mL of anhydrous THF, and stir under a nitrogen atmosphere. This is important as in the presence of moisture the Grignard reagent will be destroyed, and will not react with the carbonyl-containing compound.
Stir the trans-cinnamaldehyde solution at 0 degrees, and insert a double-tipped needle into the headspace, with the other end inserted into the headspace of the flask containing the Grignard reagent. Remove the nitrogen-filled balloon from the cinnamaldehyde, and add a nitrogen line to the Grignard flask.
Apply positive pressure with the nitrogen line to transfer the Grignard reagent into the cinnamaldehyde. After the addition is complete, replace the double-tipped needle with a balloon attachment, remove the cold bath, and stir at room temperature. To determine whether the reaction is complete, use thin layer chromatography to monitor the consumption of trans-cinnamaldehyde.
Once it has been determined that the reaction is complete, cool the mixture to 0 degrees, and, while stirring, carefully add 30 mL of saturated aqueous ammonium chloride solution and 50 mL of ethyl acetate. Separate the layers using a separatory funnel, and extract the aqueous layer with three 50-mL portions of ethyl acetate. Combine the organic extracts in the separatory funnel, and wash with 50-mL saturated aqueous sodium chloride solution.
Remove traces of water from the combined organic layers by adding approximately 500 mg of magnesium sulfate, then filter off the solid and rinse with additional ethyl acetate. Concentrate the mixture under reduced pressure, and purify the crude material using flash column chromatography.
To verify the structure of the product, dissolve 2 mg of the dried material in 0.5 mL deuterated solvent and analyze by proton NMR.
Now that we have seen an example laboratory procedure, let’s see some useful applications of the Grignard reaction.
Phorboxazole A is a natural product that is shown to exhibit potent antibacterial, antifungal, and antiproliferative properties, prompting efforts in developing synthetic procedures for its manufacture. The Grignard reaction is used in a key step of this synthesis, in which an oxazolyl-methylmagnesium bromide attacks a lactone carbonyl to form a hemiketal intermediate. While the Grignard Reaction is widely applied, side reactions can occur depending on the nature of substrate, and should be taken into account when designing a new synthesis.
For example, if the substrate is a hindered carbonyl, the Grignard reagent can react as a base, deprotonating the substrate, and yielding an enolate. Upon work up, the starting material is recovered. Alternatively, a beta-hydride elimination reaction can take place, leading to the reduction of the carbonyl to alcohol.
To suppress these side reactions, lanthanide salts such as cerium(III) chloride are added to the reaction, where the salts coordinate with the carbonyl oxygen, enhancing the carbonyl electrophilicity. This in turn enables the Grignard reagent to add to the carbonyl to give the desired product and decreases the rate of unwanted products.
For instance, in the reaction between cyclopentylmagnesium chloride and cyclohexenone, the beta-hydride elimination product dominates, if no cerium three chloride is added. However, when the same reaction is performed in the presence of the cerium salt, the desired addition product is obtained in high yield.
You’ve just watched JoVE’s introduction to the Grignard reaction. You should now understand the principles of the Grignard reaction, how to perform an experiment, and some of its applications. Thanks for watching!
Related Videos
Organic Chemistry II
123.5K 浏览
Organic Chemistry II
99.5K 浏览
Organic Chemistry II
43.1K 浏览
Organic Chemistry II
149.0K 浏览
Organic Chemistry II
47.8K 浏览
Organic Chemistry II
100.3K 浏览
Organic Chemistry II
67.0K 浏览
Organic Chemistry II
16.7K 浏览
Organic Chemistry II
34.4K 浏览
Organic Chemistry II
41.0K 浏览
Organic Chemistry II
49.6K 浏览
Organic Chemistry II
94.0K 浏览
Organic Chemistry II
149.9K 浏览
Organic Chemistry II
214.8K 浏览
Organic Chemistry II
99.9K 浏览