资料来源:阿米莉亚·阿德尔斯珀格、埃文·菲利普斯和克雷格·戈尔根,珀杜大学韦尔登生物医学工程学院,西拉斐特,印第安纳州
高频超声系统用于获取高分辨率图像。在这里,将展示最先进的系统的使用,以成像在小鼠和大鼠中发现的小脉动动脉和静脉的形态和血液动力学。超声波是一种相对便宜、便携和通用的方法,用于对人类以及大型和小型动物的血管进行非侵入性评估。与其他技术(如计算机断层扫描 (CT)、磁共振成像 (MRI) 和近红外荧光断层扫描 (NIRF))相比,这些优势是超常提供的几种关键优势。CT 需要电离辐射,在某些情况下,MRI 可能非常昂贵,甚至不切实际。另一方面,NIRF 受到激发荧光造影剂所需的穿透深度的限制。
超声在成像深度方面有局限性;然而,这可以通过牺牲分辨率和使用低频传感器来克服。腹部气体和超重会严重降低图像质量。在第一种情况下,声波的传播是有限的,而在后一种情况下,它们被覆盖的组织,如脂肪和结缔组织衰减。因此,无法观察到对比度或微弱的对比度。最后,超声波是一种高度依赖用户的技术,要求超声学家熟悉解剖学,并能够处理诸如成像伪像的外观或声学干扰等问题。
超声是一种常见的临床成像方式。超声波的基本原理包括声波的传播、它们与组织的相互作用以及反射和散射波(即回声)的记录。最近开发的高频传感器可以发射大约 13-70 MHz 的声波。例如,频率范围在 22 和 55 MHz 之间的传感器的中心频率为 40 MHz。此范围使远射束方向的空间分辨率为 50 μm,因此适用于毫米刻度的成像结构。为了扫描,传感器首先发出一束声波。其中一些波在与两个组织之间的边界碰撞时被反射回传感器,两个组织具有不同的声学阻抗。波的传输时间(即发射和检测之间的时间)用于确定图像中的单个水平线。声波的散射,即波在与比波长小得多的结构相互作用时,向多个方向偏转,是大多数超声波图像信息的罪魁祸首。其中一些声波散射由传感器记录,提供超声波图像中的精细细节。高频声波具有较低的深度穿透力,因为组织中的声音衰减度较高。因此,高频传感器仅适用于深度达 15-30 mm 的成像。在血管成像中,超声波图像对比沿血管壁出现。红血球和血小板在血液中也提供斑点对比。速度(v 以厘米/s 为单位)可以根据多普勒效应的原理进行测量:
v = c = + F / (2 = Fo = cos_)
其中 c = 组织中的声音速度 (154 厘米/s);+F = 多普勒换档频率(1/s);Fo = 传输频率 (1/s);超声波束和血流方向之间的角度。血管多普勒成像用于评估健康状态和疾病状态的血流动力学。
1. 图像设置
2. 图像采集
3. 数据传输和清理
超声是临床成像和诊断中常用的非侵入性成像技术。
超声波发射声波并测量其反射,以生成解剖结构和器官的实时图像。它比其他成像模式(如 CT、MRI 和 NIRF 扫描)具有优势,因为它相对便宜、便携且用途广泛,并且不需要造影剂。然而,它在分辨率和穿透深度上有局限性。
本视频将说明超声技术背后的关键原理,展示高频超声系统对啮齿动物血管成像的效用,并提供超声成像应用的例子。
超声波图像是通过从传感器发出一束声波并记录当波反射在体内不同组织之间的边界时产生的回波而生成的。波也可以折射,吸收,甚至分散的较小的物体,如血细胞。
反射波的数量与组织之间的声阻抗差异成正比。声阻抗 Z 取决于组织密度和声波速度。如果差异很大,如骨骼,则声波将完全反射。如果差异较低,就像器官一样,那么声波只会部分反射。
传感器接收的反射波的强度以及从传感器到组织边界的距离用于创建解剖图像。这些距离是使用声音通过身体组织的平均传播速度(约为每秒 1540 米)以及波传播到组织和返回所需的时间来确定的。
超声波可用于利用特殊模式收集不同类型的图像,以满足独特的应用。最常见的模式是亮度或 B 模式,它显示二维组织切片的声学阻抗。或者,运动或M模式成像提供一个快速运动在组织,如心脏功能。最后,使用多普勒模式评估血流量。
现在,我们已经讨论了超声波的工作原理,让我们来看看如何使用不同的超声波成像模式捕捉图像与小动物。
首先,使用背面的开关打开超声波系统。然后,使用系统左侧的开关打开显示器和计算机。接下来,将传感器插入系统的专用有源端口。然后,通过探头支座上方的塑料支架运行传感器电缆。
注意传感器一侧的凸起线。在引用监视器上显示的图像时,请使用它作为参考点。图像的灰度条上方是一个小圆圈,表示图像主体,垂直线表示传感器上的凸起线。首先,传感器应固定到夹具中,并放置在动物的 90 度处。
确保已插入生理监测单元,然后按下心率和温度按钮打开这些监视器。接下来,打开凝胶加热器并确保其指示灯亮起。
对于动物麻醉,首先检查蒸发器中的异二角液水平,如果液位低于空线,则重新填充。接下来,打开氧气罐,将流量计的气流调整到大约每分钟一升。
现在,连接动物阶段并插入 VGA 线,以收集心电图和呼吸信号。将动物鼻锥固定到位,并检查黑色异胶管和蓝色废气管是否正确连接到鼻锥体。动物现在可以麻醉和成像准备。一旦动物进入安全的麻醉室,将蒸发器表盘调到2%到3%。
一旦动物出现深度麻醉,移动它到舞台上的鼻子锥,确保切换异胶的流动。进行脚趾捏,以确认动物不会立即醒来,然后对眼睛应用眼部膏。接下来,使用粘合剂将爪子固定到舞台电极上,并使用脱毛霜去除腹部毛发。将润滑剂涂抹在直肠探头上,并将其插入动物的直肠,以测量体温。腹部然后覆盖加热的超声波转导凝胶。
首先,打开软件并选择”新学习”。进入新系列后,从菜单中选择一个用户并相应地命名您的系列。创建系列后,从键盘中选择 B 模式(代表亮度模式)。所有成像模式键都在黑色键盘的下一行。
现在,您已准备好开始成像。将传感器滚下动物的腹部。观看屏幕以监测呼吸速率。如果传感器对动物施加过大的压力,则观察到速率下降。轻轻地转动舞台上的 X 和 Y 轴旋钮,以调整传感器的位置。这样做,直到找到腹部主塔的清晰图像。在屏幕上获得所需图像后,请等待图像底部的白条填充,然后按下图像标签按钮以保存图像。模式将自动与图像标签一起保存,并且不需要包含在保存的名称中。
要捕获 M 模式或运动模式图像,请使用键盘选择 M 模式。调整 SV 步态以缩小或加宽黄色条形,将光标对齐腹部主塔的一部分。正确放置后,再次按下 M 模式。在 M 模式下,可以调整条形的位置。与 B 模式一样,在按下图像标签按钮之前,请等待图像底部的白条填充。
要执行 EKV 或 ECG 门级千赫兹可视化成像,请先在键盘上选择 B 模式,将传感器置于腹部主数的一部分,并确保有干净的 ECG 信号。然后按 EKV,选择所需的采集类型、线路密度和帧速率,然后开始扫描。采集后,将显示图像数据。
要使用彩色多普勒,首先选择 B 模式,检查传感器是否位于腹部主数上,然后选择”颜色”。按”更新”,移动轨迹球以将框大小调整为要扫描的区域,然后再次按”更新”以锁定大小。接下来,使用光标移动框。向上转动速度旋钮可增加速度阈值并减小背景信号。
为了量化血流速度,使用脉冲波多普勒模式。以彩色多普勒模式开始,然后按 PW。屏幕上将显示两条黄色斜线。调整光束角度并转动 PW 角度旋钮,使较短的虚线平行于前和后容器壁。如果角度转动得太远,虚线黄色线将变为蓝色。校准后,按 PW,然后调整基线、速度和多普勒游戏控件以居中并照亮波形。在成像过程中,您可以随时通过按算例管理和选择所需的图像来查看以前获取的图像。
获取系列所需的所有图像后,从学习管理屏幕中选择”关闭系列”。要传输数据以在不同计算机上进行进一步分析,请转到研究管理屏幕,然后单击研究或单个系列的复选框。单击”复制到”并选择所需的文件位置,然后按”确定”。最后,将蒸发器表盘变为零,将动物从舞台上移走,让它从麻醉中恢复。
每次手术后,清洁超声波设置,并擦去动物阶段和直肠探头。切勿将消毒剂直接喷洒在舞台上。传感器应在放回支架之前,先用纸巾上的 70% 乙醇擦去传感器。记得关闭氧气罐,让流量表上的气流减少到零。
完成所有成像和导出后,将学习管理屏幕上的电源按钮拼成,等待显示器和计算机关闭。显示器完全关闭后,关闭系统背面的开机按钮以”关闭”。一旦风扇已正确关闭,您应该听到风扇停止。
映像会话完成且系统关闭后,可以分析结果。
通过这个程序,对腹部主义进行解剖和功能成像。某些数据(如 B 模式扫描)在数据收集期间或之后很容易进行分析,而其他模式下的扫描最好在复制数据后进行分析,以便使用软件进行分析。
二维 B 模式扫描可提供主动脉直径或横截面面积测量。可以使用距离测量工具进行直径测量,使用面积测量工具测量面积。M 模式可用于确定容器上的圆周循环应变。查看主动脉的 M 模式扫描,用户可以看到明亮的线条与前和后容器壁相对应的位置。前墙比后墙表现出更多的运动。
周长循环应变由峰值斜面、DS 和端斜面、DD 的端面直径值确定。当主动脉扩展至其最大尺寸时发生峰值斜面,当它位于最小尺寸时,则发生端斜面。因此,使用此公式计算圆周循环应变。
彩色多普勒可用于确定血液流动方向和速度。彩色多普勒图像为用户提供血液动力学的定性评估。红色和蓝色色阶指示检测到血流速度的方向和大小。红色表示流向传感器,蓝色流离开。较深的颜色表示低速流,较浅的颜色表示较高的速度流。
现在,已经审查了超声成像的一般原则和程序,让我们来看看一些应用这种成像模式。
人类胎盘在子宫内时,很难用于研究。高频超声可用于可视化脐带和子宫动脉。这是为了测量胎盘两侧的血管直径和血流的最大速度。这与从胎盘的母体和胎儿两侧采集的血液样本数据相结合,以计算释放到循环的营养物质和物质的动脉浓度。这项研究提供了对人类胎盘功能的洞察。
颅内超声是先天性异常或脑损伤新生儿的可靠工具。该方法是非侵入性的,可以在新生儿重症监护病房的床边进行。超声图像在日冕和下垂平面上收集,以帮助新生儿大脑的可视化。这些图像可以帮助可视化大脑中存在的任何病变。彩色多普勒模式通常用于脑内血管的可视化。横窦被成像,任何血块都可以被检测出来。
您刚刚观看了 JoVE 的超声成像入门。现在,您应该了解超声成像的原理、图像收集和分析的一般方法以及多种应用。感谢您的收看!
此过程允许腹部主塔的解剖和功能成像。通过 B 模式、M 模式和多普勒超声获取短轴和长轴的实时图像至少需要 30 分钟,因此需要仔细监控麻醉动物。某些数据易于动态分析,例如二维 B 模式扫描(图 1)。这些数据可以提供主动脉直径或横截面面积测量。其他数据,如三维 B 模式(图 2)、M 模式(图 3)、彩色多普勒(图 4)和 PW 多普勒图像(图 5)通常离线分析,以确定主动脉体积、周长循环应变和血流速度。这些数据集共同提供了关于三维形态以及腹部主道的造声和脉动的定量和定性信息。
图1:在小鼠中切除主动脉瘤。腹腔动脉和优越的肠动脉可以看到从容器顶部分支。鼠标的ECG信号(绿线)和呼吸信号(黄线)显示在图像下方。
图2:健康鼠标中上主塔的运动模式(M模式)轨迹。B 模式侦察图像显示在一维 M 模式数据上方,该数据是在前向方向获取的。M 模式数据显示脉动运动,尤其是在前壁。这表明,容器应变的测量将是正常的。
图3:小鼠上主动脉的体积渲染(青色网格),带(左)和(右)解剖腹部主动脉瘤。显示来自日冕平面的超声波数据,动物的头部朝向屏幕顶部。动脉瘤向左扩展,体积和最大主动脉直径明显大于扩张前。
图4:健康上部大塔的彩色多普勒图像。老鼠的头在左边,尾巴在右边,动物被定位在苏普因。鼠标的 EKG(绿色)和呼吸(黄色)信号显示在图像下方。左边的刻度按颜色量化血流速度。红色流流向传感器,而蓝色流量远离传感器。右侧的刻度表示以毫米为单位的深度。
图5:脉冲波(PW)图像的健康上主塔。黄色光标与主塔中心的容器壁平行放置。彩色多普勒模式可帮助用户决定从何处接收强信号。速度波形式显示在图像下方。峰右侧的刻度是以毫米/s为单位的血流速度。尖峰代表动脉流动。
最近开发的高频超声传感器非常适合可视化深度达 3 厘米的小结构。在这里,一个小型动物超声系统的多功能性被证明为获取小鼠主塔动力学的体内成像数据。这种技术需要练习和识别常见的困难,如腹部阴影和多普勒扫描对齐。尽管存在这些限制,但它是一种功能强大且用途广泛的技术,可用于快速获取非侵入性成像数据。重要的是,这项技术非常适合对同一动物进行序列成像,以便对疾病进展或治疗进行纵向研究。
小型动物高频超声可用于各种心血管应用。血管应用包括主动脉疾病筛查(如主动脉瘤和解剖)、检测动脉粥样硬化斑块以及测量外周动脉疾病患者的血流。胡萝卜动脉,伊拉克动脉,和劣质的维纳卡瓦,可以很容易地通过超声波成像。心脏成像也是这一技术的主要应用,用于可视化小鼠或大鼠心脏的心房和心室。心脏超声成像可以为用户提供大量有关心脏的信息,包括解剖尺寸、收缩性、僵硬度、心脏输出、流量模式、瓣膜功能和/或血栓形成等。超声波也可用于生殖系统成像(如子宫和子宫颈)或膀胱。生殖系统成像将有助于观察子宫、子宫颈和/或阴道的结构并获取尺寸。在怀孕的老鼠或大鼠中,也可以对小狗进行可视化和测量。由于传感器技术的进步和超声技术的创新,这些应用在小动物中应用良好,并且可能适用于表面的人体成像。
Ultrasound is a commonly used noninvasive imaging technology in clinical imaging and diagnostics.
Ultrasound emits sound waves and measures their reflection to generate live images of anatomical structures and organs. It has advantages over other imaging modalities such as CT, MRI, and NIRF scans because it is relatively inexpensive, portable, and versatile and does not require contrast agents. However, it has limitations in resolution and penetration depth.
This video will illustrate the key principles behind ultrasound technology, demonstrate the utility of a high-frequency ultrasound system for imaging blood vessels in rodents, and provide examples of ultrasound imaging applications.
Ultrasound images are produced by emitting a beam of acoustic waves from the transducer and recording the echoes created as the waves reflect at the boundary between dissimilar tissues in the body. The waves can also be refracted, absorbed, or even scattered by smaller objects like blood cells.
The quantity of reflected waves is proportional to the difference in acoustic impedance between tissues. Acoustic impedance, Z, depends on the tissue density and the speed of the sound wave. If the difference is high, such as with bone, then the sound waves are completely reflected. If the difference is lower, as with an organ, then the sound waves are only partly reflected.
The intensity of the reflected waves received at the transducer along with the distance from the transducer to the tissue boundary is used to create an anatomical image. These distances are determined using the average propagation speed for sound through body tissue, which is approximately 1540 meters per second, and the time it takes for the wave to propagate to the tissue and back.
Ultrasound can be used to gather different types of images by utilizing special modes that cater to unique applications. The most common mode is brightness or B-mode, which displays the acoustic impedance of a two-dimensional slice of tissue. Alternatively, motion or M-mode imaging provides a look at the rapid movement in tissue like with cardiac function. Finally, Doppler mode is used to evaluate blood flow.
Now that we’ve discussed how ultrasound works let’s take a look at how to capture images using the different ultrasound imaging modes with a small animal.
First, turn the ultrasound system on using the switch on the back. Then, turn on the monitor and computer using the switch on the left side of the system. Next, plug the transducer into the dedicated active port of the system. Then, run the transducer cable through the plastic holders above the probe mount.
Note the raised line on one side of the transducer. Use this as a point of reference when referring to the image displayed on the monitor. Above the grayscale bar for the image is a small circle representing the image subject and a vertical line representing the raised line on the transducer. To begin, the transducer should be secured into the clamp and placed at 90 degrees to the animal.
Ensure the physiological monitoring unit is plugged in and press the heart rate and temperature buttons to turn these monitors on. Next, turn on the gel warmer and ensure its indicator light is on.
For animal anesthetization, first check the isoflurane level in the vaporizer and refill if the level is below the empty line. Next, turn on the oxygen tank and adjust the airflow on the flowmeter to approximately one liter per minute.
Now, attach the animal stage and plug in the VGA cord to collect ECG and respiration signals. Secure the animal nose cone into place and check that the black isoflurane tube and blue waste gas tube are properly connected to the nose cone. The animal can now be anesthetized and prepared for imaging. Turn the vaporizer dial to two to three percent once the animal is in a secured anesthesia chamber.
Once the animal appears deeply anesthetized, move it to the nose cone on the stage, making sure to switch the flow of isoflurane. Perform a toe pinch to confirm that the animal does not immediately wake up, then apply ophthalmic ointment to the eyes. Next, secure the paws to the stage electrodes using adhesive and remove the abdominal hair using a depilatory cream. Apply lubricant to the rectal probe and insert it in the rectum of the animal for body temperature measurements. The abdomen is then covered with warmed ultrasonic transducing gel.
To begin, open the software and select “New Study”. Once in a new series, select a user from the menu and name your series appropriately. Once your series has been created, select B-mode, which stands for brightness mode, from the keyboard. All imaging modality keys are on the bottom row of the black keyboard.
You are now ready to start imaging. Roll the transducer down the abdomen of the animal. Watch the screen to monitor the respiratory rate. A drop in the rate will be observed if the transducer is applying too much pressure on the animal. Gently turn the X and Y axis knobs on the stage to adjust the placement of the transducer. Do so until a clear image of the abdominal aorta is found. Once the desired images on the screen, wait for the white bar at the bottom of the image to fill before pressing the image label button to save the image. The modality will be automatically saved with the image label and does not need to be included in the saved name.
To capture M-mode or motion mode images, select M-mode using the keyboard. Adjust SV gait to narrow or widen the yellow bars and the cursor to align the bars over a section of the abdominal aorta. Once placed correctly, push M-mode again. The placement of the bars may be adjusted while in M-mode. As with B-mode, wait for the white bar at the bottom of the image to fill before pressing the image label button.
To perform EKV or ECG-gated kilohertz visualization imaging, first select B-mode on the keyboard, position the transducer over a section of the abdominal aorta and ensure that there is a clean ECG signal. Then press EKV, choose the desired acquisition type, line density, and frame rate and start the scan. After acquisition, the image data will be displayed.
To use color Doppler, first select B-mode, check that the transducer is over the abdominal aorta, and select Color. Press Update, move the trackball to adjust the box size to the area to be scanned, and press Update again to lock the size. Next, use the cursor to move the box. Turn the velocity knob up to increase the velocity threshold and decrease the background signal.
To quantify blood flow velocity, pulsed wave Doppler mode is used. Start in color Doppler mode and then press PW. Two yellow angled lines will appear on the screen. Adjust the beam angle and turn the PW angle knob to bring the shorter dotted line parallel to the anterior and posterior vessel wall. The dotted yellow line will turn blue if the angle is turned too far. Once there is alignment, press PW and then adjust the baseline, velocity, and Doppler game controls to center and brighten the waveforms. You may view the previously acquired images at any time during imaging by pressing study management and selecting the desired images.
After acquiring all the images needed for a series, select Close Series from the study management screen. To transfer data for further analysis on a different computer, go to the study management screen and click the check boxes for the studies or individual series. Click Copy To and select the desired file location and press OK. Finally, turn the vaporizer dial to zero, remove the animal from the stage, and allow it to recover from anesthesia.
After each procedure, clean the ultrasound set-up, and wipe off the animal stage and rectal probe. Never spray the disinfectant directly on the stage. The transducer should be wiped off with 70% ethanol on a paper towel before being placed back in the holder. Remember to turn off the oxygen tank and let the airflow reduce to zero on the flowmeter.
Once all of the imaging and export is complete clicok the power button on the study management screen and wait for the monitor and computer to shut down. After the monitor is completely off, switch the on-off button on the back of the system to “off”. You should hear the fans stop once it has been properly shut down.
After the imaging session is complete and the system has been shut down, the results can be analyzed.
With this procedure, anatomical and functional imaging of the abdominal aorta was performed. Some data such as B mode scans, are readily analyzed during or immediately after data collection, while scans in other modes are best analyzed after the data is copied for analysis with the software.
The two-dimensional B-mode scans can provide aortic diameter or cross-sectional area measurements. Diameter can be measured using the length over distance measurement tool, and area using the area measurement tool. M-mode can be used to determine circumferential cyclic strain on the vessel. Looking at an M-mode scan of the aorta, a user can see where the bright lines are corresponding to the anterior and posterior vessel wall. The anterior wall exhibits more motion than the posterior wall.
Circumferential cyclic strain is determined from the inner aortic diameter values during peak systole, DS, and end diastole, DD. Peak systole occurs when the aorta is extended to its largest size, and end diastole when it is at its smallest size. Circumferential cyclic strain is therefore calculated using this formula.
Color Doppler can be used to determine the blood flow direction and velocity. Color Doppler images provide the user a qualitative assessment of blood dynamics. The red and blue color scale indicates the direction and magnitude of the velocity of detected blood flow. Red indicates flow toward the transducer and blue flow away. The darker color represents low velocity flow and the lighter color higher velocity flow.
Now that the general principles and procedure for ultrasound imaging have been reviewed, let’s take a look at some applications where this imaging modality is used.
The human placenta is highly inaccessible for research while still in utero. High-frequency ultrasound can be used to visualize the umbilical vein and uterine artery. This is performed to measure the vessel diameter and the maximum velocity of blood flow on both sides of the placenta. This is combined with data from blood samples collected from the maternal and fetal sides of the placenta to calculate the arteriovenous concentrations of nutrients and substances released to circulation. This study provides insight into human placental function.
Cranial ultrasound is a reliable tool for neonates with congenital anomalies or brain lesions. The method is noninvasive and can be done at the bedside in the neonatal intensive care units. Ultrasound images are collected in both the coronal and sagittal planes to aid in the visualization of the neonatal brain. These images can help visualize any lesions present in the brain. Color Doppler mode is usually used for visualization of the intracerebral vessels. The transverse sinuses are imaged and any clots can be detected.
You’ve just watched JoVE’s Introduction to Ultrasound Imaging. You should now understand the principles of ultrasound imaging, the general methods for image collection and analysis, and several applications. Thanks for watching!
Related Videos
Biomedical Engineering
35.8K 浏览
Biomedical Engineering
23.8K 浏览
Biomedical Engineering
9.3K 浏览
Biomedical Engineering
14.5K 浏览
Biomedical Engineering
4.6K 浏览
Biomedical Engineering
5.7K 浏览
Biomedical Engineering
14.8K 浏览
Biomedical Engineering
11.8K 浏览
Biomedical Engineering
8.3K 浏览
Biomedical Engineering
11.9K 浏览
Biomedical Engineering
106.0K 浏览
Biomedical Engineering
7.5K 浏览
Biomedical Engineering
8.0K 浏览
Biomedical Engineering
8.2K 浏览
Biomedical Engineering
11.0K 浏览