高压反应堆容器的运行

Operation of High-pressure Reactor Vessels
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
Operation of High-pressure Reactor Vessels

16,107 Views

05:56 min
April 30, 2023

Overview

罗伯特 M Rioux, 宾夕法尼亚州立大学, 大学公园, PA

在合成化学实验室中使用气体是进行各种高度轻便和原子经济转变的必要条件。氢化、氧化和胺化等反应需要使用氢气、氧气和氨水等气体。由于这些气体在典型的反应物溶液中的溶解度很低, 因此要达到一个有意义的化学反应速率是很必要的。不仅这些气体高度反应性强, 使用高压使这些操作相当危险。在高压气体的使用中, 最大的挑战是在整个反应过程中, 对压力和温度进行严密的监控, 以避免爆炸混合物和失控反应的形成.

这些反应通常使用厚壁压力容器进行。压力容器允许在高压下操作, 并减轻了适当的安全顾虑。 图 1 演示了典型压力容器的各个部分, 用于进行高压反应。下面的协议重点介绍了这些高压反应堆容器的安全操作程序.

Figure 1
图 1. (a) 高压反应堆容器的部件。(b) 组装式高压反应堆容器.

Procedure

高压帕尔反应器 (或等效) 的操作可以大致分解为3步.

1. 充电

  1. 根据反应的规模选择适当的第二反应容器。试管, 锥形烧瓶, 或圆底烧瓶是一些适当的反应容器的例子。确保在瓶中的溶剂水平上保持足够的头部空间, 因为溶剂在压力发泄过程中会起泡.
  2. 将反应物连同搅拌棒一起放置在反应器中, 并将其放置在高压反应堆中.
  3. 将压力表总成放在反应容器的顶部。确保排气阀完全关闭。把它顺时针转向手指紧。不要紧.
  4. 在容器上装配拆分环.
  5. 在拆分环上开始拧紧对角相反的螺钉, 但不要一路拧紧。这是为了确保仪表施加的压力甚至横跨容器.
  6. 完全拧紧所有螺钉.
  7. 将安全环放置在工作台上, 并将反应堆置于圆环中.
  8. 将圆环向上滑动到拆分环上, 并将螺钉与拆分环一侧的凹痕对齐.
  9. 手指拧紧安全环.
  10. 该容器现在已为下一阶段做好准备.

2。清除并加压

  1. 将加压气体源连接到反应堆, 并打开调节器上的主阀.
  2. 将压力设置为大约 1/3 rd 所需的最终压力.
  3. 慢慢打开压力表上的排气阀并加压反应堆.
  4. 现在关闭气体调节器上的主阀.
  5. 慢慢松开进入反应堆的压力线, 使反应堆的压力开始下降。确保反应堆处于通风良好的区域.
  6. 一旦压力降到零, 再次拧紧压力线, 并打开气体调节器上的主阀门.
  7. 将压力调整到最终所需压力的 2/3, 并重复上述步骤 3-6.
  8. 现在, 调整稳压器的压力, 使其达到最终的期望值, 并对反应堆加压.
  9. 一旦达到最终压力, 关闭压力表上的排气阀, 并关闭气体调节器上的主阀.
  10. 小心松开压力线, 使管线中的气体和调节器被排出.
  11. 总是将气体调节器上的出口压力设置为零 (这通常意味着松开压力控制阀)。这样可以确保气体不会泄漏, 即使调节器上的主阀是偶然打开的.
  12. 现在, 将反应堆放在引擎盖中, 让反应在所需的时间内运行。如果需要, 反应堆可以加热。确保温度低于容器的额定限值.

3。释放

  1. 一旦反应结束, 将反应堆冷却到室温, 如有必要.
  2. 现在慢慢打开仪表上的排气阀, 从反应堆排出气体。这样做, 尽可能慢, 以防止溶剂溢出在反应堆。重要的是, 要确保反应堆在通风柜里.
  3. 一旦反应堆的压力降到零, 松开安全环和拆分环上的螺钉.
  4. 拆卸拆分环并从反应器中取出测量仪.
  5. 将反应釜从反应器中取出.
  6. 一旦反应釜从反应堆中取出, 用清水冲洗反应堆, 然后用丙酮清洗, 并使其保持干燥.

在合成化学实验室中使用气体对于进行各种高度轻便和原子经济的转换是必不可少的, 而且通常需要高压力以确保足够气体在反应物溶液中的溶解度.

氢化、氧化和胺化等反应需要分别使用氢气、氧和氨等气体。由于这些气体在典型的反应物溶液中的溶解度很低, 因此要达到一个有意义的化学反应速率是很必要的。因此, 高压反应堆容器–通常由不锈钢制成的厚壁容器–被用来进行这种反应。压力容器允许在高压下操作, 并减轻了适当的安全顾虑.

在本视频中, 我们将首先回顾安全考虑, 然后学习如何对高压反应堆容器进行充电、清洗和排气.

高压反应堆容器可以维持 3000 PSI 和500度的环境。压力较高的容器需要更厚的墙壁, 但这使得温度控制更加困难.

在操作过程中必须保持制造商的限制, 因为气体具有高度的反应性, 而且高压本身就是一种危险。除了温度和压力外, 在设置实验时还必须牢记容量和耐腐蚀性.

反应本身也必须被考虑, 因为一些反应, 如氢甲酰化, 产生热量或而其他像哈伯-博世-过程导致气体产品。过多的热量或气体形成可能会使反应堆在其操作极限之外导致爆炸.

考虑到这些安全因素, 让我们看看如何使用这些容器.

若要开始该过程, 请选择将发生反应的清洁辅助容器。根据反应的规模, 这可以是一个试管, 锥形, 或圆底烧瓶.

将反应物连同清洁的 stirbar 一起加入第二容器.

将压力表总成放在反应容器的顶部。关闭排气阀顺时针转动, 直到手指紧.

将拆分环添加到容器上, 拧紧对角相反的螺钉以密封反应堆。不要一次拧紧螺丝, 以确保整个容器的压力均匀.

将反应堆放在台式的安全环内。将圆环滑动到拆分环上, 并将螺钉与拆分环上的缩进对齐.

手指拧紧安全环。随着反应堆密封, 它可以被清洗和加压。

下一步是用惰性气体清除附着的反应器。将气源连接到反应堆, 并打开调节器上的主阀.

使用钢瓶调节器将压力设置为大约 1/第三的最终所需值。慢慢打开压力表上的排气阀并加压反应堆.

当达到所需的压力时, 将阀门关闭到高压釜, 然后在调节器和钢瓶阀门上将阀门放在气体源上.

慢慢地松开进入反应堆的压力线, 这样反应堆的压力就会开始下降。一旦压力降到零, 再次关闭压力线, 打开调节器上的主阀到气体源.

重复前面的过程 2/第三的最后压力.

现在, 调整稳压器的压力, 使其达到最终的期望值, 并对反应堆加压。一旦达到最终压力, 关闭压力表上的排气阀, 并关闭气体调节器上的主阀.

小心松开压力线, 使管线中的气体和调节器排出。这确保了气体源断开从反应堆, 这是重要的, 一旦化学已经启动.

通过松开压力控制阀, 将钢瓶调节器上的出口压力设置为零。这样可以确保气体不会泄漏, 即使调节器上的主阀是偶然打开的.

现在, 将反应堆放在通风罩中, 让反应在所需时间内运行。如果需要, 反应堆可以加热。

下一步是安全地排出已完成的反应。一旦反应时间已经过去了, 冷却反应堆到室温.

然后, 慢慢打开仪表上的排气阀, 从反应堆排出气体。这样做的速度尽可能慢, 以避免溶剂溢出在反应堆.

一旦反应堆的压力降到零, 松开安全环和拆分环上的螺钉。拆卸拆分环并从反应器中取出测量器.

从反应器中收集反应容器。用水和丙酮冲洗反应堆。把它开到空气干燥。

你刚才看了朱庇特介绍使用高压反应堆的容器。你现在应该了解他们的功能, 以及如何正确的充电, 加压, 和发泄一。谢谢收看!

Applications and Summary

在高压下对气体的操控可以通过使用帕尔反应器 (或等效) 容器来完成。在操作这些容器时, 应注意采取适当的安全措施, 因为它们会引发爆炸危险.

Transcript

The use of gases in the synthetic chemistry laboratory is essential for carrying out a variety of highly facile and atom economical transformations, and often require high pressures to ensure sufficient solubility of gases into the reactant solution.

Reactions such as hydrogenation, oxidation, and amination require the use of gases like hydrogen, oxygen, and ammonia, respectively. Due to the poor solubility of these gases in typical reactant solutions, high pressures are necessary to achieve a meaningful reaction rate. Therefore, high-pressure reactor vessels – thick-walled containers, typically made of stainless steel – are used to carry out such reactions. The pressurized vessel allows for operation at high pressure with appropriate safety concerns abated.

In this video, we will first review the safety considerations and then learn how to charge, purge, and vent a high-pressure reactor vessel.

High-pressure reactor vessels can maintain environments of 3,000 PSI and 500 degrees. Vessels rated for higher pressures require thicker walls, though, making temperature control more difficult.

The manufacturer’s limits must be maintained during operation, as the gases are highly reactive, as well as the high pressure being a hazard itself. In addition to temperature and pressure, capacity and corrosion resistance must also be kept in mind when setting up an experiment.

The reaction itself must also be considered, as some reactions, like Hydroformylation, produce heat or while others like the Haber-Bosch-Process result in gaseous products. Too much heat or gas formation could push the reactor outside its operating limits leading to an explosion.

With these safety considerations in mind, let’s see how to work with these vessels.

To begin the procedure, select a clean secondary vessel in which the reaction will take place. Depending on the reaction’s scale, this can be a test tube, Erlenmeyer, or round-bottomed flask.

Add the reactants along with a clean stirbar into the secondary vessel.

Place the pressure gauge assembly on top of the reaction vessel. Close the vent valve by turning it clockwise until finger tight.

Add the split rings onto the vessel, tightening diagonally opposite screws to seal the reactor. Do not tighten the screws all at once to ensure even pressure across the vessel.

Place the reactor inside the safety ring on the benchtop. Slide the ring over the split rings, and align the screw with the indent on the split ring.

Finger tighten the safety ring. With the reactor sealed, it is ready to be purged and pressurized.

The next step is to purge the affixed reactor with an inert gas. Attach the gas source to the reactor and open the main valve on the regulator.

Using the cylinder regulator set the pressure to approximately 1/3rd of the final required value. Slowly open the vent valve on the pressure gauge and pressurize the reactor.

When desired pressure is reached, close the valve to the autoclave, followed by the valve to the gas source on the regulator and the cylinder valve.

Slowly loosen the pressure line going into the reactor, so that the pressure in the reactor starts to fall. Once the pressure falls back to zero, close the pressure line again and open the main valve on the regulator to the gas source.

Repeat the previous process with 2/3rd of the final pressure.

Now adjust the pressure on the regulator to the final desired value and pressurize the reactor. Once the final pressure is reached, close the vent valve on the pressure gauge, and close the main valve on the gas regulator.

Carefully loosen the pressure line, so that the gas in the line and the regulator is vented. This ensures that the gas source is disconnected from the reactor, which is important, once chemistry has been initiated.

Set the outlet pressure on the cylinder regulator back to zero by loosening the pressure control valve. This ensures that gas will not leak, even if the main valve on the regulator is turned on by accident.

Now place the reactor in a fume hood and let the reaction run for the desired amount of time. The reactor can be heated if desired.

The next step is to safely vent the completed reaction. Once the reaction time has elapsed, cool the reactor to room temperature.

Then, slowly open the vent valve on the gauge to vent the gas from the reactor. Do this as slow as possible to avoid the solvent from spilling over in the reactor.

Once the pressure in the reactor has dropped to zero, loosen the safety ring and the screws on the split rings. Disassemble the split rings and remove the gauge from the reactor.

Collect the reaction vessel from the reactor. Rinse the reactor with water and the acetone. Leave it open to air dry.

You’ve just watched JoVE’s introduction to using high-pressure reactor vessels. You should now understand their function, and how to properly charge, pressurize, and vent one. Thanks for watching!

Tags