资料来源: 布莱克斯堡弗吉尼亚理工大学土木与环境工程系罗伯特. 里昂
木材是一种无处不在的材料, 已在建筑中使用最早的时间。木材是一种可再生、可持续的材料, 具有很大的审美价值。今天, 可能有更多的建筑与木材建造比任何其他结构材料。许多这些建筑都是 singlefamily 的住宅, 但许多较大的公寓楼, 以及商业和工业建筑, 也使用木结构。
木材在建筑中的广泛使用, 从经济和美学两方面都具有吸引力。建造具有最低数量设备的木结构建筑的能力, 使 woodframe 建筑的成本与其他类型的建筑保持竞争力。另一方面, 建筑的考虑是重要的, 裸露的木材的美丽和温暖是很难与其他材料匹配。
本试验的目的是对三种木材进行拉伸和压缩试验, 研究其应力应变行为, 并对木梁进行四点弯曲试验, 以确定其弯曲性能。在四点弯曲试验中, 简支梁在其第三点加载两个相等点荷载, 导致中心部分具有恒定力矩和零剪切。这是一个重要的测试, 因为木材结构元素经常用于地板系统, 因此主要是由弯曲应力加载。
木材由细长的、圆形的或长方形的管状细胞组成。这些细胞比宽 (20-40 微米) 长得多 (2-4 毫米), 而细胞的长度往往与树的长度有关。细胞壁是由纤维素 (聚合物) 组成的, 在形成细胞壁的每一层中, 聚合链在不同的方向上排列。中间壁, 其链沿着细胞的更长的维度排列, 提供了细胞的大部分强度, 而内壁和外墙的对角线链提供了稳定性。细胞壁结构为半晶态, 晶体结构为30-60 微米长度, 其次为短无定形剖面。链和细胞被称为木质素的物质捆绑在一起。每个细胞都相对较弱, 但木质素所提供的许多细胞的捆绑效应, 结果在一个非常强大和有用的建筑材料。一个很好的类比是, 一个单一的饮水秸秆与许多秸秆粘合或捆绑在一起的阻力。
木材是一种生物材料的纯粹事实, 使它很容易受到环境的侵蚀和害虫的攻击, 如果它暴露在元素。因此, 今天使用的许多木材都是用化学物质预处理的, 以保护它免受环境和昆虫的侵袭。木材是一种生物材料, 也意味着木材之间的工程性质有很大的变化, 即使在同一树种中也是如此。大量的不完美将不可避免地存在, 使木材成为不均匀的材料。这些缺陷是结的结果, 其中分支或肢体的一部分已被纳入到树的主体。因此, 在木材设计中采用了较大的安全因素, 或设计强度与实际极限强度的比值。木材安全因素的典型值为2.5 的成员在弯曲, 并校准设计代码, 使99% 的成员将至少有1.25 因素的安全。
木材的细胞组成使它成为正交异性材料。因此, 如果材料加载平行或垂直于单元格的长边, 则属性将有所不同。这一性质意味着通常的弹性理论不能直接使用, 因为材料不是各向同性 (所有三方向相同的性质), 但正交异性 (不同的性质在两个方向: 纵向和横向的更长的细胞方向)。细胞的组成也意味着木材的含水量是决定其强度的关键参数。这两种因素都过于复杂, 不能用于日常设计, 因此结构用木材的设计是基于线性理论和由以下方法确定的允许应力:
重要的是要注意的是, 大体积变化与减少水分含量。干燥造成的收缩也不均匀。例如, 对于道格拉斯冷杉, 径向收缩率为 4.8%, 切向收缩率为 7.6%, 体积收缩率为12.4%。木材是一种高分子材料, 它也容易蠕变, 或在恒定荷载作用下的连续粘性样变形。因此, 如果装载时间短, 木材通常能支持更高的应力。负载持续时间因子用于解释此行为。如果加载工期短, 如地震荷载和大风浪的10分钟或更少, 设计值可以乘以 1.6, 因为负载持续时间足够短, 不能发生明显的蠕变。
其他常用的校正因子为尺寸因子、重复构件因子和形式因子。大小因素说明了大多数木材数据是由浅波束测试生成的, 不到 12. 在深度上, 众所周知, 平均强度随着成员数量的增加而减小, 因为存在缺陷 (所谓的大小等等)。重复的因素是用来解释的事实, 木材成员往往是相互接近, 并被捆绑在一起的地板隔膜和收藏家, 所以个别成员的弱点或失败不会导致不成比例崩溃 (即, 失败将被本地化)。最后, 成员的纵横比 (深度/厚度) 也会影响测试结果。所有这些矫正因素基本上都是经验性的, 但根据实验室测试结果和现场表现经验的统计数据是合理的。
木材的正交各向异性性能可以通过创建层合板来改善, 如胶合板, 在垂直方向上排列有纤维的图层产生各向同性材料。同样地, 在同一方向上和粘在压力下的薄条纤维制成的构件, 或胶合层压 (胶合层), 从分布缺陷中获得强度。
压缩试验
拉力试验
弯曲试验
图 1: 四点弯曲装置.
图 2: 木梁弯曲破坏.
木材是一种无处不在的材料, 已在建筑中使用最早的时间。木材是可再生和可持续的, 是一种结构材料, 广泛应用于工程中, 用于建造单户住宅建筑, 也用于在商业和工业建筑中构筑隔断和其他结构性元素。
由于其天然的起源, 木材的力学性质与树木的个别物种。水分含量和其他变量, 例如, 存在的缺陷。对于特定的应用, 设计者必须仔细考虑木材构件或结构的预期载荷, 以确保材料的最大效果。
该视频将说明如何测试不同类型木材的力学性能, 并确定其应力应变行为和 flectural 性能。
木材由细长的、圆形的或长方形的管状细胞组成, 比它们的宽度长得多。在墙内有几层由 microfibrils 制成, 它们是纤维素聚合物的丛。
微纤丝链在墙层内的不同方向排列。中间的墙壁与它的链沿着细胞的更长的维度提供了大部分的力量的细胞, 而内部和外墙的对角线链提供稳定。木质素结合在一起的纤维素聚合物以及微纤丝链和墙壁的细胞。许多细胞的捆绑作用在一起导致一个非常强的建筑材料。
木材是一种生物材料, 因此, 它非常容易受到环境衰变和害虫的侵袭。今天使用的大部分木材都是用化学物质预处理的, 以保护它免受环境和昆虫的侵袭。
木材是一种不均匀的材料, 其特征是大量的缺陷或缺陷, 例如, 结和劈。因此, 大型的安全因素或设计强度与实际极限强度的比值被用来解释不同木件的工程性质的大变化。
由于它的细胞组成, 木材是一个正交异性材料, 有不同的性质沿纵向和分别, 横向轴的晶粒方向。因此, 材料的行为将不同于负载平行或垂直于木纤维。不同的方法可以改善木材的各向异性性质。
层压板, 如胶合板是由层与纤维排列在垂直方向, 导致各向同性材料。或者, 胶合层是由在同一方向上对齐的薄条纤维制成, 在压力下粘接, 从而从分配缺陷中获得强度。
木材的细胞组成也占了细胞腔内的游离水和细胞壁的水。因此, 水分含量是决定木材强度的关键参数, 一般来说, 水分的减少会导致强度的增加。与干燥有关的容积变化可能导致不均匀的收缩和扭曲, 如扭、弓、杯或弯。
由于木材是一种高分子材料, 它也容易蠕变或在恒定载荷下对连续粘性样变形。当负载释放时, 大部分变形被恢复。因此, 如果装载时间短, 木材通常能支持更高的应力。由于所有这些因素都过于复杂, 不能用于日常设计, 为了结构上的目的, 我们使用以下方法: 对许多物种的终极无缺陷强度值进行统计分析, 对含水量和强度比进行修正对木材牌号进行修正, 以纠正强度降低的影响。
通常为大多数树林提供的属性以表格形式发布, 便于参考。这些特性有: 允许的弯曲应力、与晶粒平行的张力、水平剪切、垂直于晶粒的压缩、与晶粒平行的压缩以及弹性弹性模量。除了木材种类的基本定位特性外, 还应该明显的是, 并非所有的木材在荷载作用下都有相同的行为。
既然你已经了解了木材的物理性质和木材测试的原理, 让我们用这些来进行一些测试。
在您开始之前, 选择三个品种的木材比较。对于每种品种, 准备两个压缩立方体试样, 公称边缘尺寸为3.5 英寸。确保立方体没有缺陷, 它们的相反表面是平行的。标记每个品种中的一个标本, 用于测试与谷物平行的负载, 以及用于测试的剩余试样, 其载荷与晶粒垂直。
使用卡尺测量每个试样的加载方向的高度。并在几个位置重复测量以确定近似平均值。完成后, 使用相同的过程来确定每个试样的截面尺寸。
设置通用测试机, 如朱庇特视频中所示的材料常量。然后, 仔细地将标本放在压缩压板的正确方向上。将十字头向下, 直到施加轻微载荷, 然后使用精细控制将负载向后退至尽可能接近零。
现在以每秒 40 psi 的加载速率应用压缩负载。随着载荷的增加和试样中明显的可见应变, 压缩试验可能会持续数分钟。允许测试继续, 直到达到明显的最大负载为止。
在测试完成后记录最大负载, 然后对剩余的样本重复该过程。
执行另一个压缩测试, 这一次, 将负载垂直于试样的晶粒。对其他种类的木材重复该过程。
现在准备一些 dogbone 标本使用相同的三木材品种。用晶粒平行于长尺寸的样品准备一组试样, 再用与长尺寸垂直的晶粒进行第二集。
对所有六标本进行拉力测试, 如朱庇特视频中所示的钢的应力应变特性。
获得四约24英寸长的每种木材品种。在万能试验机上安装四点弯曲试验装置。一旦仪器就绪, 启动测试机。调整测试设置以记录负载和十字头值, 并捕获最大负载。在仪器中安装标本并放下上部十字头, 直到仪器开始与木梁接触。
以每分钟2000磅的速度应用负载, 直到光束断裂。在测试完成时记录失败负载, 然后对剩余的样本重复测试。
使用表汇总压缩、拉伸和弯曲测试的结果。接下来, 在每一列中, 将数据正常化为最大值, 然后新建一个表。
现在, 看看你的结果。如所有结果一致显示, 橡木是最强的木头, 其次是云杉和南松树。对于两个最重要的性质, 弯曲强度和压缩平行的谷物, 云杉似乎大约约87% 和南松树约 78%, 像橡树一样强。鉴于森林之间的价格差别很大, 南松树作为最便宜的, 是一个非常有效的选择。
木材测试在结构工程中至关重要, 可以评估最终设计在日常使用中处理压力和应变的能力, 以确保产品安全和符合国际标准。
在四点弯曲试验中, 简支梁在第三点加载两个等点荷载, 导致中心部分具有恒定力矩和零剪切。这项试验对于木质结构元素主要由弯曲应力加载的地板系统至关重要。
直到最近, 木结构被限制在公寓或小型办公楼中的三或四层楼。跨层压木材的发展导致了能够达到八个或更多故事的结构系统的发展。而更高的建筑物, 按20层的顺序, 仍在发展之中。
你刚刚看了朱庇特对木材测试的介绍。您现在应该了解木材的工程特性, 以及如何对木材试样进行拉伸、压缩和弯曲试验。
谢谢收看!
在表1中总结了压缩、拉伸和弯曲试验结果。如所有结果一致显示, 橡木是最强的木头, 其次是云杉和南松树。
表 1: 木材测试摘要
压缩并行 (psi) | 压缩垂直 (psi) | 张力并联 (psi) | 垂直拉伸 (psi) | 弯曲 (psi) | |
橡 木 | 7382 | 2045 | 4780 | 547 | 8902 |
云杉 | 6342 | 1534 | 3451 | 412 | 7834 |
南松树 | 5437 | 1254 | 2756 | 327 | 7423 |
表 2: 规范化数据
压缩并行 (psi) | 压缩垂直 (psi) | 张力并联 (psi) | 垂直拉伸 (psi) | 弯曲 (psi) | |
橡 木 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
云杉 | 0.86 | 0.75 | 0.72 | 0.75 | 0.88 |
南松树 | 0.74 | 0.61 | 0.58 | 0.60 | 0.83 |
表2显示了与表1相同的数据, 但对橡木材料的强度进行了规范化。对于两个最重要的性质, 弯曲强度和压缩平行的谷物, 云杉似乎大约约87% 和南部松树约 78%, 像橡树一样强。鉴于伍兹之间的价格差别很大, 看来南松树是最便宜的, 是一个非常有效的选择。
木材是一种可持续的天然材料, 具有正交各向异性的特性。在其他实验室, 材料, 如金属, 聚合物和混凝土已被测试的紧张或压缩的假设, 材料的行为各向同性, 意味着它的阻力, 对特定的负载是相同的, 无论方向材料。例如, 钢在微观尺度上有无数的随机定向晶粒, 在宏观尺度上赋予它均匀和各向同性的性质。然而, 木头, 以它容易地可辨认的五谷方向, 不行动各向同性。因此, 设计者必须仔细考虑对木材构件或结构的预期载荷, 以确保材料的最大有效性。另外, 由于它的自然起源, 木材有机械性质, 与树木的个别树种, 水分含量, 和试样的大小。
直到最近, 木结构被限制在公寓或小型办公楼中的三或四层楼。 交叉层状木材的发展, 木面板组成的层, 以直角为中心, 然后胶合, 导致了结构系统的发展, 能够达到8或更多的故事。按照20层楼的顺序, 高得多的建筑仍在发展之中。
Wood is a ubiquitous material that has been used in construction from the earliest times. Renewable and sustainable, wood is a structural material widely used in engineering for construction of single-family residential buildings and also for framing partitions and other nonstructural elements in commercial, and industrial buildings.
Due to its natural origin, wood has mechanical properties tied to the individual species of tree. The moisture content and other variables, for example, the presence of defects. For a specific application, a designer must carefully consider the anticipated loadings on a wood member or structure in order to ensure maximum effectiveness of the material.
This video will illustrate how to test the mechanical properties of different types of wood and determine their stress-strain behavior and flectural performance.
Wood is composed of elongated, round, or rectangular tube-like cells that are much longer than they are wide. Within in the wall there are several layers made out of microfibrils, which are bundles of cellulose polymers.
Microfibril chains are aligned in distinct directions inside the walls’ layers. The middle wall with its chains aligned along the longer dimension of the cell provides most of the strength to the cell, while the inner and outer walls’ diagonal chains provide stability. Lignin binds together the cellulose polymers as well as the microfibril chains and the walls’ cells. The bundling effect of many cells together results in a very strong construction material.
Wood is a biological material, and, thus, is very susceptible to environmental decay and pest attack. Much of the wood used today is pretreated with chemicals to protect it from the environment and insect attack.
Wood is an inhomogeneous material characterized by a large number of imperfections or defects such as, for example, knots and splits. In consequence, large factors of safety or ratios of design strength to actual ultimate strength are used to account for large variation in the engineering properties of different wood pieces.
Due to its cellular makeup, wood is an orthotropic material, having different properties along the longitudinal and, respectively, the transversal axes with respect to the grain direction. In consequence, the material will behave differently to loads parallel or perpendicular to the wood fiber. The orthotropic properties of wood can be ameliorated by different methods.
Laminates such as plywood are made of layers with fibers aligned in perpendicular directions, resulting in an isotropic material. Alternatively, glulam is made of thin strips of fibers aligned in the same direction and glued under pressure, deriving its strength from distributing defects.
The cellular makeup of wood also accounts for the free water inside the cell cavities and water bound to the cell walls. In consequence, moisture content is a key parameter in determining wood strength, and, in general, moisture reduction will result in an increase in strength. Volumetric changes associated with drying may result in nonuniform shrinkage and distortion such as twist, bow, cup, or crook.
As wood is a polymeric material, it is also prone to creep or, under constant load, to continuous viscous-like deformation. When the load is released, most of the deformation is recovered. As a result, wood can generally support much higher stresses if the duration of loading is short. Since all these factors would be too complex for use in everyday design, for structural purposes we use the following: a statistical analysis of the ultimate defect-free strength values for many species, corrections for moisture content, and strength ratios based on wood grade to correct for strength-reducing effects.
The properties commonly given for most woods are published in a tabular form for easy reference. These properties are: allowable bending stress, tension parallel to grain, horizontal shear, compression perpendicular to grain, compression parallel to grain, and the modulus of elasticity. In addition to the basic orientation-specific properties of the species of wood, it should be evident that not all wood behaves the same way under load.
Now that you understand the physical properties of wood and the principles of wood testing, let’s use these to perform a few tests.
Before you begin, choose three varieties of wood to compare. For each variety, prepare two compression cube specimens with nominal edge dimensions of 3.5 inches. Ensure that the cubes are free of defects, and their opposite surfaces are parallel. Mark one specimen from each variety for testing with a load applied parallel to the grain, and the remaining specimens for testing with a load applied perpendicular to the grain.
Measure the height of the direction of loading of each test specimen using a caliper. And repeat the measurement in a few locations to determine the approximate average. When you are finished, use the same procedure to determine the cross-sectional dimensions of each specimen.
Set up the universal testing machine as shown in the JoVE video regarding material constants. Then, carefully center a specimen in the correct orientation on the compression platen. Lower the crosshead until a slight load is applied and then use the fine controls to back the load off to as close to zero as possible.
Now apply the compressive load at a loading rate of 40 psi per second. The compression test may continue for several minutes as the load increases and with significant visible strain in the specimen. Allow the test to continue until an obvious maximum load is reached.
Record the maximum load when the test is finished, and then repeat the procedure for the remaining specimens.
Perform another compression test, and, this time, apply the load perpendicular to the grain of the specimen. Repeat the procedure for the other varieties of wood.
Now prepare some dogbone specimens using the same three wood varieties. Prepare one set of specimens with the grain parallel to the long dimension, and a second set with the grain perpendicular to the long dimension.
Perform tension tests on all six specimens as shown in the JoVE video regarding stress-strain characteristics of steel.
Obtain a two-by-four about 24 inches long of each wood variety. Install the four-point bending test apparatus on the universal testing machine. Once the apparatus is ready, start the testing machine. Adjust the test settings to record the loads and crosshead values, and capture the maximum load. Install the specimen in the apparatus and drop the upper crosshead until the apparatus just begins to make contact with the wood beam.
Apply the load at a rate of 2,000 pounds per minute until the beam fractures. Record the failure load when the test is complete, and then repeat the test for the remaining specimens.
Use a table to summarize the results for the compression, tension, and bending tests. Next, in each column, normalize the data to the maximum value, and make a new table.
Now, take a look at your results. As shown consistently by all results, oak is the strongest wood, followed by spruce and southern pine. For the two most important properties, bending strength and compression parallel to the grain, the spruce seems to be roughly about 87% and the southern pine roughly 78%, as strong as the oak. Given the very large price differential between the woods, southern pine as the cheapest of them is a very efficient choice.
Wood testing is of paramount importance in structural engineering for assessing the capability of final designs to handle stress and strain during routine use in order to ensure product safety and compliance with international standards.
In a four-point bending test, a simply-supported beam is loaded with two equal-point loads at its third point, resulting in a central portion with constant moment and zero shear. This test is critical for floor systems where the wood’s structural elements are primarily loaded by bending stresses.
Until recently, wood structures were limited to three or four stories in an apartment or small office building. Developments of cross-laminated timber have resulted in the development of structural systems capable of reaching eight or more stories. While much taller buildings, in the order of 20 stories, are still under development.
You’ve just watched JoVE’s Introduction to Wood Testing. You should now understand the engineering properties of wood, and how to perform tensile, compressive, and bending tests on wood specimens.
Thanks for watching!
Related Videos
Structural Engineering
23.7K 浏览
Structural Engineering
112.7K 浏览
Structural Engineering
89.7K 浏览
Structural Engineering
32.6K 浏览
Structural Engineering
28.7K 浏览
Structural Engineering
36.5K 浏览
Structural Engineering
11.8K 浏览
Structural Engineering
42.1K 浏览
Structural Engineering
26.4K 浏览
Structural Engineering
15.3K 浏览
Structural Engineering
12.4K 浏览
Structural Engineering
26.2K 浏览
Structural Engineering
15.5K 浏览
Structural Engineering
23.8K 浏览
Structural Engineering
33.2K 浏览