资料来源:蒂尔德·安徒森1号,罗尔夫·卢德1
1临床科学隆德系,感染医学系,生物医学中心,隆德大学,221 00 隆德,瑞典
似乎无法确定,微生物生物多样性确实令人震惊,估计有一万亿种物种并存(1,2)。虽然气候特别恶劣,如人类胃的酸性环境(3)或南极洲的冰下湖泊(4),可能由特定物种主导,但细菌通常存在于混合培养物中。由于每种菌株都可能影响另一种(5)的生长,分离和培养”纯”(仅包含一种类型)菌落的能力在临床和学术环境中都变得至关重要。纯培养能进一步进行遗传(6)和蛋白细胞学检查(7),分析样品纯度,也许更值得注意的是,从临床样本中鉴定和鉴定传染性病原体。
细菌具有广泛的生长要求,有许多类型的营养介质,旨在维持不苛求和挑剔的物种 (8)。生长介质可以以液体形式(作为肉汤)或以典型的琼脂基(一种从红藻中提取的凝胶剂)固体形式制备。直接接种到肉汤有产生基因多样性甚至混合细菌群的风险,电镀和再循环创造了一种更纯净的培养,每个细胞都有高度相似的遗传组成。条纹板技术基于样品的逐行稀释(图1),目的是将单个细胞彼此分离。任何由介质和指定环境维持的存活细胞(以下简称细胞形成单元,CFU)随后可以通过二元裂变找到孤立的子细胞群落。尽管细菌群落内突变率很快,但通常认为该细胞群为克隆细胞。因此,采集和重新采集这一种群可确保后续工作只涉及一种细菌类型。
图1:条纹板基于原始样品的逐行稀释。I)接种最初使用锯齿形运动进行分散,从而形成细菌相对密集的区域。II-IV)条纹从前面的区域绘制,每次使用无菌接种循环,直到达到第四个象限。V)最后一个指向板块中间的锯齿状运动形成了一个区域,其中接种已明显稀释,使菌落彼此分开出现。
条纹板技术也可以与选择性和/或差分介质的使用相结合。选择性培养基会抑制某些生物体的生长(例如通过添加抗生素),而差别培养基将仅有助于区分另一种(例如,通过血液琼脂板上的溶血)。
微生物学的所有工作的基础是使用无菌(无菌)技术。每种细菌培养物都应被视为潜在的致病性,因为存在危险菌株意外生长、气溶胶形成和设备/人员污染的风险。为了尽量减少这些风险,所有介质、塑料、金属和玻璃器皿通常在使用前后通过高压灭菌进行灭菌,使其在 121°C 左右受到高压饱和蒸汽的影响,从而有效清除任何残留的细胞。工作空间通常在使用之前和之后使用乙醇进行消毒。在与传染性病原体一起工作时,始终佩戴实验室外套和手套。
1. 设置
2. 议定书
在培养皿中,如果一种细菌经历多轮无性繁殖,将导致克隆菌群的形成。然而,从混合样品(如土壤悬浮液)获得单个细菌可能很困难。如果这种异质文化被一循环地接受,它可以包含多达一万亿个单个细菌。为了将这么多细菌传播到琼脂板的表面,获得单个菌落,即使使用锯齿形图案,循环也需要连续拖动到足够多的板块的表面并排设置,以包围整个自由岛。显然,科学家并没有真正使用那么多的盘子。相反,他们使用一种称为条纹电镀的技术。
条纹板技术基于细菌样品的逐行稀释,并在单个培养皿的固体介质表面执行。首先,介质表面在视觉上分为五个部分,将圆周的四个片段指定为前四个部分,将板块的中心作为第五个部分。这将有效地创建五个媒体板出一个单一的培养皿。接下来,使用所需的接种循环,使用锯齿形图案对第一部分进行条纹。然后,要么使用新的一次性环路,或者在电线环路的情况下,它用Bunsen燃烧器消毒,燃烧,直到它沿电线的长度红热。这种使用新的循环,或火焰灭菌循环,去除任何剩余的细菌细胞,帮助稀释细菌。然后,热循环在空气中冷却几秒钟,然后被拖过第一部分,形成三到四条单独的线,每条线只携带一小部分细菌进入第二部分。其余部分以相同的方式条纹,每次使用无菌循环,并穿过前一条条纹。
使用这种条纹和消毒循环,应稀释后续部分的细菌浓度,以便最后部分仅包含几个离散定位的细菌。孵化后,这些离散细菌繁殖产生亚细胞的分离克隆菌落,称为菌落形成单位,或CFU。这些可以收获和重新采摘,以确保后续工作只涉及一种细菌类型,称为纯培养物。除了将单菌落从混合细菌培养物中分离外,条纹电镀技术还用于选择介质特异性菌株、确定细菌菌群形态或识别不同的细菌种类。在本视频中,我们将演示如何通过条纹电镀技术从混合细菌样品悬浮液中分离出单细菌菌落。
首先,戴上实验室手套和实验室外套。接下来,使用 70% 乙醇对工作空间进行消毒。接下来,选择一个合适的介质,以维持被利用的细菌物种或菌株,并开始准备培养物。在这里,常见的LB琼脂是通过称出10克预配方,粉末介质和7.5克琼脂。将称重、干燥的组件添加到玻璃瓶中,该玻璃瓶可容纳两倍的最终体积,以避免溢出。然后,在瓶子里加入500毫升的水,然后半紧闭盖上。将瓶子放入摄氏121度的高压灭菌器中,进行20分钟的消毒。完成后,使用防热手套或热垫从机器上取下介质,然后立即拧紧瓶盖将其紧紧合住。
对于当天使用,让介质冷却,将瓶子放入加热到约 45 摄氏度的水浴中,以保持介质处于液态状态。或者,介质可以在室温下储存在固态状态下。必要时,用盖子稍微打开的瓶子微波以熔化介质,并使用 45 摄氏度的水浴让介质冷却。
接下来,拿一套无菌培养皿,并带有永久标记,用调查员和媒体名称以及日期标记。然后,将所需的介质体积转移到无菌容器中,并在必要时添加抗生素或其他敏感成分。在这里,50毫升的介质与100微升的卡那霉素混合,最终浓度为每毫升25微克。旋转管,以确保在整个介质中均匀分布添加的部件。慢慢地,为了避免气泡形成,将20至25毫升约45摄氏度的培养介质倒入每个板中。如果出现气泡或泡沫,请使用常规移液器和无菌尖端快速清除。然后,立即更换所有盖子以防止污染。让琼脂在室温下凝固至少两小时或过夜。凝固后,将培养板倒置在四摄氏度,以尽量减少介质表面的冷凝。
要条纹文化选择,首先采取一个干净的文化板,并删除盖子。快速工作,将一次性无菌循环浸入所需的接种中,然后立即使用锯齿形运动将环拭过板的第一象限。更换盘子的盖子,丢弃用过的接种回路,然后选择一个新的无菌循环。使用新的循环,使三到四个笔画跨越从第一象限辐射的原始拭子线,该象限应包含相对密集的细菌群进入第二象限。再次关闭盖子,并丢弃循环。使用新循环时,再次重复此操作,但这次从第二个象限进入第三个象限。然后,再次使用新的循环,从第三段进入第四节。最后,使用新的循环,以锯齿形图案从第四象限向板中心进行最后一个描边。这一地区的细菌患病率将较低,理想情况下允许从单个活的母细胞建立单个菌落。
更换板盖,如果适合细菌种类,用底片密封板,以防止气流。将培养板倒置,以防止冷凝滴,然后放置在适当的温度进行生长。在这里,一个孵化器被设置为37摄氏度。让板孵育,直到细菌菌落可见。要生成克隆细菌群,请从该板块中选择一个离散菌群。现在,用无菌循环,触摸目标菌落,和以前一样,在新板的第一象限中发出条纹。继续交替消毒循环,并条纹板的剩余象限,如前所述,以锯齿形到中心结束。关闭板,并将其放置以孵育,直到离散菌落形成。一旦这些菌落生长,它们通常代表纯克隆菌株。
初始条纹板可能含有来自不同细菌物种的细胞或具有不同遗传成分的细胞的菌落,具体取决于样品纯度。通过随后分离单个菌落,其中所有单位都派生自一个共同的母细胞,第二条纹程序产生相对克隆的细菌群,适合进一步表征或接种到肉汤。
初始条纹板可能含有来自不同遗传成分的细胞的菌落,或(取决于样本纯度)来自不同细菌物种的菌落(图2A)。
通过随后分离单个菌落,其中所有单位都派生自一个共同的母细胞,第二条纹程序产生相对克隆的细菌群,适合进一步表征或接种到肉汤(图 2B.
图2:通过隔离单个、隐蔽的菌群,可以从混合样本中生成纯区域性。A)单个细菌细胞(CFU)的生长产生了一个克隆菌落,与其他物种和菌株分离。此 CFU 用于随后条纹到新的板B)第二个板,其中细菌群仅由从初始 CFU 派生的细胞组成。
在临床和学术环境中,获得和培养纯细菌菌群的能力至关重要。条纹电镀能够分离相对克隆细胞群,源自共享的CFU,在诊断期间或分离物的额外表征中可能特别感兴趣。样品被条纹到合适的琼脂营养介质上,孵育,直到菌落变得可见。一个孤立的殖民地随后被收获,并重新被刺到第二个盘子上。
On a Petri dish, if a single bacterium undergoes multiple rounds of asexual reproduction, it will lead to the formation of a clonal colony. However, obtaining a single bacterium from a mixed sample, such as a soil suspension, can be difficult. If one loopful of this heterogeneous culture is taken, it can contain as many as one trillion individual bacteria. To spread this many bacteria out onto the surface of an agar plate and obtain a single colony, even using a zig-zag pattern, the loop would need to be dragged continuously over the surface of enough plates set side-by-side to encircle the entirety of Liberty Island. Obviously, scientists do not really use that many plates. Instead, they use a technique called streak plating.
The streak plate technique is based on progressive dilution of a bacterial sample, and it is performed over the solid media surface of a single Petri dish. To begin, the media surface is visually divided into five sections by assigning four fragments of the circumference as the first four sections, and the plate’s center as the fifth. This will effectively create five media plates out of a single Petri dish. Next, using a loopful of desired inoculum, the first section is streaked using a zig-zag pattern. Then, either a new disposable loop is used, or in the case of a wire loop, it is sterilized with a Bunsen burner, flaming it until it is red hot along the length of the wire. This use of a new loop, or flame sterilize loop, removes any remaining bacterial cells, assisting in the dilution of the bacteria. The hot loop is then cooled in the air for a few seconds before being dragged through the first section to create three to four separate lines, each carrying only a fraction of bacteria into the second section. The remaining sections are streaked in the same manner, using a sterile loop each time, and a single pass through the previous streak.
Using this cycle of streaking and sterilizing, the bacterial concentration in every subsequent section should be diluted so that the final section contains only a few discretely located bacteria. Upon incubation, these discrete bacteria multiply to produce isolated clonal colonies of daughter cells, which are referred to as Colony Forming Units, or CFUs. These can be harvested and re-streaked to ensure that subsequent work involves only a single bacterial type, referred to as a pure culture. As well as isolating single colonies from a mixed-bacterial culture, the streak plating technique is also used to select media-specific strains, determine bacterial colony morphology, or identify different bacterial species. In this video, we will demonstrate how to isolate single-bacterial colonies from a mixed-bacterial sample suspension via streak plating technique.
To begin, put on laboratory gloves and a lab coat. Next, sterilize the workspace using 70% ethanol. Next, select a suitable medium that will sustain the utilized bacterial species or strain and begin preparing the media. Here, common LB agar is prepared by weighing out ten grams of pre-formulated, powdered media and 7.5 grams of agar. Add the weighed, dried components to a glass bottle which is able to hold twice the final volume to avoid overflow. Then, add 500 milliliters of water to the bottle, and cap it semi-tightly. Sterilize the media by placing the bottle in an autoclave set to 121 degrees Celsius for twenty minutes. After completion, use heat-proof gloves or a hot pad to remove the media from the machine and then immediately twist the bottle cap to close it tightly.
For the same-day use, let the media cool down by placing the bottle into a water bath heated to approximately 45 degrees Celsius, to preserve the media in a liquid state. Alternatively, the media can be left at room temperature to store at solid state. When needed, microwave the bottle with the lid slightly open to melt the media, and allow the media to cool using a 45 degree Celsius water bath.
Next, take a sleeve of sterile Petri dishes, and with a permanent marker, label them with the investigator and media names as well as the date. Then, transfer the required volume of media into a sterile vessel, and add antibiotics or other sensitive components if necessary. Here, 50 milliliters of media is mixed with 100 microliters of Kanamycin for a final concentration of 25 micrograms per milliliter. Swirl the tube to ensure even distribution of the added components throughout the media. Slowly, so as to avoid bubble formation, pour 20 to 25 milliliters of approximately 45 degree Celsius culture medium into each of the plates. If bubbles or foam appear, swiftly remove using a regular pipette and a sterile tip. Then, immediately replace all lids to prevent contamination. Allow the agar to solidify at room temperature for at least two hours or overnight. Once solidified, store the culture plates upside down at four degrees Celsius to minimize condensation on the medium’s surface.
To streak the culture of choice, first take a clean culture plate and remove the lid. Working quickly, submerge a disposable, sterile loop into the desired inoculum and then immediately swab the loop over the first quadrant of the plate using a zig-zag motion. Replace the lid of the dish, discard the used inoculation loop, and then select a new sterile loop. Using the new loop, make three to four strokes crossing the original swab line radiating from the first quadrant, which should contain a relatively dense bacteria population into the second quadrant. Close the lid once more, and discard the loop. With a new loop, repeat this action again, but this time streaking from the second into the third quadrant. Then, with a new loop again, make another streak from the third into the fourth section of the plate. Finally, with a fresh loop, make one last stroke in a zig-zag pattern from the fourth quadrant towards the center of the plate. The bacterial prevalence will be lower in this area, ideally allowing individual colonies to be established from a single viable mother cell.
Replace the plate lid, and if appropriate for the bacterial species, seal the plate with para film to prevent airflow. Turn the culture plate upside down to prevent condensation drips, and then place at a suitable temperature for growth. Here, an incubator is set to 37 degrees Celsius. Allow the plate to incubate until bacterial colonies are visible. To generate a clonal bacterial population, select one discrete colony from this plate. Now, with the sterile loop, touch the target colony, and as before, make a streak in the first quadrant of a new plate. Continue to alternately sterilize the loop and streak the remaining quadrants of the plate as previously demonstrated, ending with the zig-zag to the center. Close the plate, and place it to incubate until discrete colonies form. Once these colonies are grown, they will typically represent pure clonal strains.
The initial streak plate may contain colonies originating from cells from different bacterial species or cells with different genetic makeup, depending upon the sample purity. Through subsequent isolation of a single colony, where all units are derived from a common mother cell, the second streaking procedure generates a relatively clonal bacterial population, suitable for further characterization or inoculation into broth.
Related Videos
Microbiology
129.4K 浏览
Microbiology
316.1K 浏览
Microbiology
132.1K 浏览
Microbiology
166.2K 浏览
Microbiology
189.0K 浏览
Microbiology
296.0K 浏览
Microbiology
93.8K 浏览
Microbiology
363.3K 浏览
Microbiology
186.2K 浏览
Microbiology
86.8K 浏览
Microbiology
38.2K 浏览
Microbiology
29.1K 浏览