生长曲线:使用菌落成形单位和光学密度测量生成生长曲线

Growth Curves: Generating Growth Curves Using Colony Forming Units and Optical Density Measurements
JoVE Science Education
Microbiology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Microbiology
Growth Curves: Generating Growth Curves Using Colony Forming Units and Optical Density Measurements

292,265 Views

12:15 min
April 30, 2023

Overview

资料来源:安德鲁·范阿尔斯特1,瑞安农M.勒维克1,纳塔利娅·马丁1,维克多·迪丽塔1
1密歇根州立大学微生物学和分子遗传学系,美国密歇根州东兰辛分校

生长曲线提供了有关细菌生长动力学和细胞生理学的宝贵信息。它们使我们能够确定细菌在可变生长条件下的反应,并为给定细菌定义最佳生长参数。原型增长曲线通过四个增长阶段前进:滞后、指数、静止和死亡 (1)。

Figure 1
图1:细菌生长曲线。在批量培养中生长的细菌通过四个生长阶段:滞后、指数、静止和死亡。滞后期是细菌达到能够快速细胞生长和分裂的生理状态的时间段。指数阶段是细胞生长和分裂速度最快的阶段,在此期间,DNA复制、RNA转录和蛋白质生产均以恒定、快速的速度发生。固定阶段的特点是由于营养限制和/或有毒中间积累,细菌生长减慢和停滞。死亡期是细胞溶血由于严重营养限制而发生的阶段。

滞后期是细菌达到能够快速细胞生长和分裂的生理状态的时间段。出现这种滞后的原因是细菌需要时间来适应新的环境。一旦必要的细胞成分在滞后阶段产生,细菌进入指数增长阶段,DNA复制、RNA转录和蛋白质生产都发生

Procedure

1. 设置

  1. 所需的实验室材料:液体介质、凝固琼脂介质、Erlenmeyer烧瓶、15 mL试管、磷酸盐缓冲盐水(PBS)、细菌细胞扩散器、70%乙醇和分光光度计。所有溶液和玻璃器皿在使用前都必须消毒。
  2. 使用 70% 乙醇进行消毒,为工作站做好准备。在 Bunsen 燃烧器附近工作,以防止介质污染。
  3. 使用细菌时,应使用适当的个人防护设备和无菌技术。使用细菌培养物时,需要实验室外套和手套。
  4. 缓冲剂、溶液和试剂的配方
    1. 磷酸盐缓冲盐水 (PBS) (8)。
    2. 卢里亚-贝尔塔尼兄弟 (LB) (9)。

2. 议定书

  1. 媒体准备
    1. 识别生长介质,用于培养细菌,并在单独的可高压灭菌瓶中制备液体肉汤和固体琼脂(1.5% w/v琼脂)培养基。在这里,LB肉汤和LB琼脂为大肠杆菌的生长做好了准备。
    2. 在设置为 121°C 的高压灭菌器中,用半紧固盖对介质进行消毒 35 分钟。
    3. 对于琼脂介质,在高压灭菌后,放入设置为 50°C 的水浴中 30 分钟冷却。冷却后,将 20-25 mL 琼脂胶培养基倒入 100x15mm 圆形培养皿中。在使用前,让板在室温下设置24小时。
  2. 细菌的初始制备
    1. 从冷冻库存中,条纹细菌在选定的介质琼脂上分离,以获得单菌群分离物。在允许为所选细菌生长条件下孵育。在这里,大肠杆菌在LB琼脂上条纹,在37°C过夜(16-18小时)孵育。
    2. 使用无菌接种回路,从条纹板中选择单个菌落,在15 mL试管中接种4 mL液体介质,并在所选细菌允许的条件下生长。在这里,大肠杆菌在37°C下生长,在210rpm的转速下摇动过夜(16-18小时)。
  3. 增长曲线设置
    1. 生长瓶制备
      1. 高压灭菌器适当大小埃伦迈耶烧瓶。通常使用 1:5 的介质与总烧瓶体积的比率。在这里,100 mL LB 介质用于 500 mL 烧瓶。
      2. 使用血清学移液器,将无菌介质转移到 Erlenmeyer 烧瓶。
    2. 稀释系列制备
      1. 标签 15 mL 试管: -1, -2, -3, -4, -5, -6, -7, -8 和 -9, 将 9mL PBS 分布到每个。这些数字对应于用于计算 CFU/mL 的稀释系数。每个收集时间点都需要一组新的管。(图2)
    3. 阿加板制备
      1. 带有收集时间和稀释系数的标签板。对于每个时间点,每个稀释都有一个板。
  4. 增长曲线协议
    1. 媒体接种
      1. 使用步骤 2.2.2 中准备的隔夜液体培养液,用 1:1000 容量的培养液为烧瓶介质接种。在这里,100 μL 隔夜液体培养剂添加到 100 mL LB 介质中。
      2. 旋转介质以均匀分布细菌。
    2. 时点集合
      1. 生长条件设置
        1. 在为给定细菌选择的实验生长条件下放置烧瓶。对于快速生长的细菌,应经常使用时间点,对于生长缓慢的细菌,可以以较长的间隔进行。在这里,大肠杆菌在37°C下生长,以每分钟210转(rpm)摇动,每1小时采集一次时间点。
      2. 光学密度 (OD600) 测量
        1. 在每个时间点,包括起始时间点(t = 0),提取1 mL的细菌培养物,并分配到分光光度计比色皿中。
        2. 擦拭比色皿,并将光密度记录在 600 nm 波长。如果光学密度读数大于 1.0,则使用 900 μL 新介质稀释 100 μL 培养物 1:10,记录光学密度,并将此值乘以 10 进行 OD600 测量。
      3. 殖民地形成单元 (CFU/mL) 测量
        1. 在每个时间点,提取1 mL的细菌培养物,并放入含有9 mL PBS的-1玻璃试管中。
        2. 对于稀释系列,从 -1 管将 1 mL 从 -1 管向下所有稀释管转移到 -9,每次传输后涡旋。(图2)
        3. 对于每次稀释,将100 μL的细胞悬浮液分给相应标记的固体介质琼脂板。(图2)
        4. 使用在乙醇中灭菌、通过 Bunsen 燃烧器火焰并通过接触琼脂表面冷却的细胞扩张器,将 100 μL 的细胞悬浮液扩散,直到琼脂板表面变干。
        5. 在支持细菌生长的温度下倒置孵育扩散板。在这里,大肠杆菌在37°C孵育。
        6. 孵育后,一旦出现可见的菌落,计算每个板块上的细菌菌落数量,并记录这些值以及每个时间点所有板的相关稀释系数。

3. 数据分析和结果

  1. 光密度 (OD600) 增长曲线图
    1. 在半对数尺度上绘制光学密度 (OD600) 与时间。(图3)
  2. 菌落形成单元 (CFU/mL) 生长曲线图
    1. 对于每个时间点,选择菌落计数在 30-300 细菌范围内的稀释板。将菌群计数数乘以稀释系数,再乘以 10,因为 100 μL 差差在计算 CFU/mL 时被视为额外的 1:10 稀释。
    2. 在半日志尺度上绘制殖民地形成单位与时间。(图4)
  3. 相关光学密度和菌落形成单元
    1. 在小于或等于 1.0 OD600 的 OD600 读数的线性刻度上绘制菌落成形单元与光学密度,因为 OD600 和 CFU/mL 之间的关系在 1.0 OD600 之后的精确度较低。此处绘制了前六个时间点。(图5)
    2. 生成显示方程和 R2值的线性回归趋势线。
  4. 确定细菌翻倍时间
    1. 使用菌落形成单位生长曲线图,在指数相中,在图形上识别两个点,它们之间的斜率最陡,以计算倍增时间。
    2. 计算加倍时间
      1. • 时间= t2 t1,其中t1 = 时间点 1 和t2 = 时间点 2
      2. ,其中b = t2的细菌数,B = t1的细菌数,n = 代数的细菌数。 派生自: .
      3. 使用:

细菌通过称为细胞分裂的过程繁殖,导致两个相同的子细胞。如果生长条件有利,细菌数量将呈指数级增长。

细菌生长曲线绘制培养物中的细菌量作为时间的函数。典型的生长曲线通过四个阶段进行:滞后阶段、指数相、固定相和死亡阶段。滞后阶段是细菌到达一种可以迅速生长和分裂的状态所需的时间。在此之后,细菌过渡到指数阶段,其特点是细胞快速生长和分裂。在此阶段,细菌培养的指数增长率可以表示为倍增时间,这是细菌在特定条件下繁殖的最快速度。下一个阶段是固定阶段,细菌细胞生长停滞,由于环境营养枯竭,生长和死亡率甚至达到平衡。最后,细菌进入死亡阶段。这是细菌生长急剧下降和严重的营养消耗导致细胞的溶化。

两种技术可用于量化培养中细菌的数量,并绘制生长曲线。第一种是通过殖民地形成单位,或CFU。为了获得 CCF,在常规时间点执行一到十个系列的九稀释。本例中的第一种稀释剂为负数,含有9mL的PBS和1mL的细菌培养物。导致 1:10 稀释系数。然后,将1mL的溶液转移到下一管,负2,产生1:100稀释系数。这个过程通过最后一个管,负九,导致最终稀释系数为1:10亿。在此之后,每个稀释100微升被镀。然后孵育板,并计算克隆菌落。在 30 到 300 个菌落之间生长的给定时间点的稀释板用于计算该时间点的每毫升 CCF。

测量细菌浓度的第二种常用方法是光学密度。与介质空白相关的文化光密度可以通过分光光度计立即测量。通常,600 纳米的波长(也称为 OD600)用于这些测量,这些测量会随着细胞密度的增加而增加。虽然光学密度不如CCF,但它很方便,因为它可以即时获得,并且需要的试剂相对较少。这两种技术可以一起使用来创建一个标准曲线,该曲线可以更准确地近似于培养物的细菌细胞计数。在本视频中,您将学习如何从大肠杆菌的时序稀释中获得CCF和OD600测量值。然后,使用 CFU 和 OD600 测量值分别绘制两个增长曲线,然后由标准曲线关联。

在处理细菌时,使用适当的个人防护设备(如实验室外套和手套)并遵循适当的无菌技术非常重要。

之后,用70%乙醇对工作站进行消毒。首先,在单独的高压灭菌瓶中制备 LB 肉汤和 LB 固体琼脂介质。部分关闭瓶盖后,在设定温度为 121 摄氏度的高压灭菌器中对介质进行消毒 35 分钟。接下来,让琼脂介质在设定在50摄氏度的水浴中冷却30分钟。冷却后,将 20 至 25 mL 倒入每个培养皿中。在此之后,让板在室温下设置 24 小时。

为了准备一个殖民地分离物,以后将被用于产生液体细菌培养物,请使用先前冷冻的库存和适当的条纹电镀技术,将大肠杆菌条纹在LB琼脂上分离。在37摄氏度的温度下孵育一夜之间。在此之后,冷却琼脂上的火焰灭菌接种回路,然后从带条纹的板上选择单个菌落。在 15 mL 试管中接种 4 mL 的液体介质。然后,在37摄氏度的温度下生长大肠杆菌,在210rpm下摇动。

要设置生长曲线中使用的1:1000体积的细菌培养物,首先获得一个500 mL Erlenmeyer烧瓶的高压灭菌。然后,使用 50 mL 血清学移液器将 100 mL 无菌介质转移到烧瓶。接下来,连续将 9 个 15 ml 试管标记为 1 到 9。这些数字对应于用于计算菌落形成单位或 CFU 的稀释系数。然后,将 9 mL 的 1X PBS 添加到每个管中。在此之后,用相应的时间点和将生长的稀释因子标记准备好的琼脂板。在大肠杆菌的这个例子中,在起始时间点之后,每小时服用一次时间点。使用先前制备的隔夜液体大肠杆菌培养基,在高压灭菌管 500 mL Erlenmeyer 烧瓶中接种培养基,培养体积为 1:1000。旋转介质以均匀分布细菌。

遮蔽分光光度计后,用无绒擦拭清洁比色皿。接下来,将 1 mL 的培养体放入比色皿中,并将其放入分光光度计,以获得点零时培养的光学密度。然后,在37摄氏度的温度下生长大肠杆菌,在210rpm下摇动。在每个时间点后零点,从烧瓶中取出另外1 mL的细菌培养物,并重复光学密度测量。如果光学密度读数大于 1.0,则用 900 微升的新鲜介质稀释 100 微升细菌培养,然后再次测量光学密度。对于 OD 600 测量,此值可以乘以 10。

要获得每个时间点的菌落形成单位测量,请在每个时间点从烧瓶中再提取 1 mL 的细菌培养物。将细菌培养物放入负一试管和涡旋中混合。然后,首先将负一管中的1 mL转移到负二管和涡旋中混合,从而执行稀释系列。将 1 mL 从负 2 管转移到负三管和涡旋混合。继续这个串行转移下来所有的稀释管到负九管。将100微升的细胞悬浮液放在相应的标签板上,用于每次稀释。对于每一次稀释,对乙醇中的细胞扩散器进行消毒,通过Bunsen燃烧器火焰将其传递,然后通过接触远离接种的琼脂表面来冷却。然后,使用细胞扩张器分散细胞悬浮液,直到琼脂板表面变干。在37摄氏度的温度下孵育这些板块。一旦出现可见的菌落,计算每个盘子上的细菌菌落数量。在每个时间点记录每个板的这些值及其相关的稀释系数。

要创建 OD 600 增长曲线,在确保所有数据点正确输入到表中后,选择所有时间点及其相应数据。要生成菌落形成单位生长曲线图,请选择每个时间点的菌落计数在 30 到 300 细菌范围内的稀释板。将菌落计数数乘以稀释系数,再乘以 10。这是因为在计算每毫升的菌落形成单位时,100微升的分布被认为是额外的1:10稀释。在此之后,在半日志尺度上绘制殖民地形成单位与时间。

这些分别采用OD 600和CFU测量的地块可以提供有关大肠杆菌生长动力学的宝贵信息。光学密度和菌落形成单元可以相关,因此可以从 OD 600 测量中估计每毫升的 CCF,从而在将来的实验中节省时间和材料。

为此,在 OD 600 读数小于或等于 1 的线性刻度上,根据光学密度绘制菌落成形单元。0. 在此之后,以 Y = MX + B 格式生成线性回归趋势线,其中 M 是斜率,B 为 y 截距。右键单击数据点并选择添加趋势线和线性。然后,选中此框以在图表上显示公式,并在图表上显示 R 平方值。R 平方值是数据与拟合回归线匹配程度的统计度量。在此示例中,前 6 个时间点在 x 轴上绘制 OD 600,y 轴上每毫升的 CCF。在未来具有相同生长条件的实验中,这些斜率和 y 截距值可以插入此方程中,以从 OD 600 读数中估计 CCF。接下来,查看形成单位增长曲线图的殖民地。在指数相中,确定两个时间点之间的斜率最陡。要计算倍增时间,首先计算所选时间点之间的时间变化。然后,使用此处所示的方程计算代数变化。此处,小写 b 是时间点 3 处的细菌数量,大写 B 是时间点 2 的细菌数。最后,将时间变化除以代代变化。在此示例中,加倍时间为 0。26小时或15分19秒比较不同实验治疗的倍数,使我们能够确定特定细菌物种的最佳生长条件。因此,具有最低双倍时间的治疗将是测试条件的最佳选择。

Results

菌群形成单位和光学密度的图是可视化生长动力学的两种方法。通过确定 CFU/mL 和 OD600 之间的关系,光学密度图还提供了 CFU/mL 随时间的估计值。导致最短倍增时间的条件被认为是特定细菌生长的最佳条件。

Applications and Summary

生长曲线对于了解细菌的生长动力学和生理学有价值。它们使我们能够确定细菌在可变生长条件下的反应,并为给定细菌定义最佳生长参数。菌落形成单位和光密度图都包含有价值的信息,描述了滞后阶段的持续时间,达到的最大细胞密度,并允许计算细菌倍增时间。生长曲线还允许在相同的生长条件下对不同细菌进行比较。此外,光学密度提供了一种标准化初始接种的方法,提高了其他实验中的一致性。

在设计增长曲线实验时,需要考虑使用哪种方法。作为生成生长曲线的首选方法,菌落形成单位图更准确地反映了批次培养中的可行细胞计数。菌落形成单位图还允许测量细菌生长的条件,否则会干扰光学密度测量。然而,这是一个更耗时的过程,需要广泛使用试剂,必须手动执行。光学密度图不太准确,仅提供菌落形成单位的估计值,需要为每个独特的细菌生成标准曲线。光学密度主要用于方便,因为它省时少,不需要很多试剂来工作。对光学密度最有吸引力的是,分光光度培养箱可以自动生成生长曲线,大大增加可立即测试的培养条件数量,并无需不断参与培养。

References

  1. R. E. Buchanan. 1918. Life Phases in a Bacterial Culture. J Infect Dis 23:109-125.
  2. CAMPBELL A. 1957. Synchronization of cell division. Bacteriol Rev 21:263-72.
  3. Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S. 2010. Robust growth of Escherichia coli. Curr Biol 20:1099-103.
  4. Goldman E, Green LH. 2015. Practical Handbook of Microbiology, Third Edition. CRC Press.
  5. Ben-David A, Davidson CE. 2014. Estimation method for serial dilution experiments. J Microbiol Methods 107:214-221.
  6. Koch AL. 1968. Theory of the angular dependence of light scattered by bacteria and similar-sized biological objects. J Theor Biol 18:133-156.
  7. Sezonov G, Joseleau-Petit D, D'Ari R. 2007. Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 189:8746-9.

Transcript

Bacteria reproduce through a process called cell division, which results in two identical daughter cells. If the growth conditions are favorable, bacterial populations will grow exponentially.

Bacterial growth curves plot the amount of bacteria in a culture as a function of time. A typical growth curve progresses through four stages: lag phase, exponential phase, stationary phase, and death phase. The lag phase is the time it takes for bacteria to reach a state where they can grow and divide quickly. After this, the bacteria transition to the exponential phase, characterized by rapid cell growth and division. The rate of exponential growth of the bacterial culture during this phase can be expressed as the doubling time, the fastest rate at which bacteria can reproduce under specific conditions. The stationary phase comes next, where bacterial cell growth plateaus and the growth and death rates even out due to environmental nutrient depletion. Finally, the bacteria enter the death phase. This is where bacterial growth declines sharply and severe nutrient depletion leads to the lysing of cells.

Two techniques can be used to quantify the amount of bacteria present in a culture and plot a growth curve. The first of these is via colony forming units, or CFUs. To obtain CFUs a one to ten series of nine dilutions is performed at regular time points. The first of these dilutions, negative one in this example, contains 9mL of PBS and 1mL of the bacterial culture. Resulting in a 1:10 dilution factor. Then, 1mL of this solution is transferred to the next tube, negative two, resulting in a 1:100 dilution factor. This process continues through the last tube, negative nine, resulting in a final dilution factor of 1:1 billion. After this, 100 microliters of each dilution is plated. The plates are then incubated and the clonal colonies are counted. The dilution plate for a given time point that grows between 30 and 300 colonies is used to calculate the CFUs per milliliter for that time point.

The second common method of measuring bacterial concentration is the optical density. The optical density of a culture can be measured instantly, in relation a media blank, with a spectrophotometer. Typically a wave length of 600 nanometers, also referred to as OD600, is used for these measurements, which increase as cell density increases. While optical density is less precise than CFUs, it is convenient because it can be obtained instantaneously and requires relatively few reagents. Both techniques can be used together to create a standard curve that more accurately approximates the bacterial cell count of a culture. In this video, you will learn how to obtain CFUs and OD600 measurements from timed serial dilutions of E. coli. Then, two growth curves using the CFU and OD600 measurements, respectively, will be plotted before being related by a standard curve.

When working with bacteria, it is important to use the appropriate personal protective equipment such as a lab coat and gloves and to observe proper aseptic technique.

After this, sterilize the work station with 70% ethanol. First, prepare the LB broth and LB solid agar media in separate autoclaveable bottles. After partially closing the caps of the bottles, sterilize the media in an autoclave set to 121 degrees Celsius for 35 minutes. Next, allow the agar media to cool in a water bath set to 50 degrees Celsius for 30 minutes. Once cooled, pour 20 to 25 mL into each Petri dish. After this, allow the plates to set for 24 hours at room temperature.

To prepare the single colony isolates that will later be used to produce a liquid bacterial culture, use previously frozen stock and proper streak plating technique to streak E. coli for isolation on LB agar. Incubate the dish at 37 degree Celsius overnight. After this, cool a flame sterilized inoculation loop on the agar before selecting a single colony from the streaked plate. Inoculate 4 mL of liquid media in a 15 mL test tube. Then, grow the E. coli at 37 degrees Celsius overnight with shaking at 210 rpm.

To set up the 1:1000 volume of bacterial culture that will be used in the growth curve, first obtain an autoclaved 500 mL Erlenmeyer flask. Then, use a 50 mL serological pipette to transfer 100 mL of sterile media to the flask. Next, label nine 15 ml test tubes consecutively as one through nine. These numbers correspond to the dilution factor that will be used to calculate the colony forming unit, or CFU. Then, add 9 mL of 1X PBS to each tube. After this, label the prepared agar plates with the corresponding time points and dilution factors that will be grown. In this example with E. coli, after the starting time point, time points are taken once every hour. Using the previously prepared overnight liquid E. coli culture, inoculate the media in the autoclave 500 mL Erlenmeyer flask with 1:1000 volume of culture. Swirl the media to evenly distribute the bacteria.

After blanking a spectrophotometer, clean the cuvette with a lint-free wipe. Next, dispense 1 mL of the culture into the cuvette and place it into the spectrophotometer to obtain the optical density of the culture at time point zero. Then, grow the E. coli at 37 degrees Celsius with shaking at 210 rpm. At each time point after time point zero, withdraw another 1 mL of bacterial culture from the flask and repeat the optical density measurement. If the optical density reading is greater than 1.0, dilute 100 microliters of bacterial culture with 900 microliters of fresh media and then measure the optical density once more. This value can be multiplied by 10 for the OD 600 measurement.

To obtain the colony forming unit measurement for each time point, withdraw an additional 1 mL of bacterial culture from the flask at each time point. Dispense the bacterial culture into the negative one test tube and vortex to mix. Then, perform the dilution series by first transferring 1 mL from the negative one tube into the negative two tube and vortex to mix. Transfer 1 mL from the negative two tube into the negative three tube and vortex to mix. Continue this serial transfer down all the dilution tubes to the negative nine tube. Dispense 100 microliters of cell suspension onto the correspondingly labeled plate for each dilution. For every dilution, sterilize a cell spreader in ethanol, pass it through a Bunsen burner flame, and cool it by touching the surface of the agar away from the inoculate. Then, use the cell spreader to spread the cell suspension until the surface of the agar plate becomes dry. Incubate the plates upside down at 37 degrees Celsius. Once visible colonies arise, count the number of bacterial colonies on each plate. Record these values and their associated dilution factors for each plate at each time point.

To create an OD 600 growth curve, after ensuring all the data points are entered correctly into a table, select all of the time points and their corresponding data. To generate a colony forming unit growth curve plot, choose the dilution plate where the colony counts fell within the range 30 to 300 bacteria for each time point. Multiply the colony count number by the dilution factor, and then by ten. This is because the 100 microliters spread is considered an additional 1:10 dilution when calculating colony forming units per milliliter. After this, plot the colony forming units versus time on a semi-log scale.

These plots produced with OD 600 and CFU measurements, respectively, can provide valuable information on E. coli growth kinetics. The optical density and colony forming units can be related, so that CFUs per milliliter can be estimated from OD 600 measurements, saving time and materials in future experiments.

To do this, plot the colony forming units against the optical density on a linear scale for OD 600 readings less than or equal to 1. 0. After this, generate a linear regression trend line in Y = MX + B format, where M is the slope and B is the y-intercept. Right click on the data points and select add trend line and linear. Then, check the box to display the equation on the chart and display the R squared value on the chart. The R squared value is the statistical measurement of how closely the data matched the fitted regression line. In this example, the first 6 time points are plotted with OD 600 on the x axis and CFUs per milliliter on the y axis. In future experiments with the same growth conditions, these slope and y-intercept values can be plugged into this equation to estimate CFUs from OD 600 readings. Next, look at the colony forming unit growth curve plot. During the exponential phase, identify two time points with the steepest slope between them. To calculate the doubling time, first calculate the change in time between the selected time points. Then, calculate the change in generations using the equation shown here. Here, lower case b is the number of bacteria at time point three and upper case B is the number of bacteria at time point two. Finally, divide the change in time by the change in generations. In this example, the doubling time is 0. 26 hours or 15 minutes and 19 seconds. Comparing doubling times across different experimental treatment allows us to identify the best growth conditions for a certain bacterial species. Therefore, the treatment with the lowest doubling time will be most optimal of the conditions tested.

Tags