资料来源:纳塔利娅·马丁1号,安德鲁·范·阿尔斯特1号,瑞安农·勒维克1号,维克多·迪丽塔1号
1 密歇根州立大学微生物学和分子遗传学系
细菌有能力在称为水平基因转移的过程中交换遗传物质(脱氧核糖核酸,DNA)。结合外源性DNA提供了一种机制,细菌可以通过它获得新的遗传特性,使他们能够适应不断变化的环境条件,如抗生素或抗体的存在(1)或分子在自然栖息地发现(2) 水平基因转移有三种机制:转化、转导和共聚(3)。在这里,我们将专注于转化,细菌从环境中获取自由DNA的能力。在实验室中,转化过程有四个一般步骤:1) 制备合格细胞,2) 用DNA孵育合格细胞,3) 细胞恢复,4) 细胞的电镀,用于转化剂的生长(图1)。
图 1:转换过程的一般步骤。转化过程有四个一般步骤:1) 制备合格细胞,2) 用DNA孵育,3) 细胞的恢复和 4) 电镀细胞的生长转化剂。
要发生转化,受体细菌必须处于称为能力的状态。有些细菌能够因某些环境条件而变得自然而然。然而,许多其他细菌不能自然地胜任,或者这个过程的条件还不得而知。将DNA引入细菌的能力具有一系列研究应用:生成感兴趣的DNA分子的多个副本,表达大量蛋白质,作为克隆过程中的组成部分,以及其他。由于转化对分子生物学的价值,有几个协议旨在使细胞在自然能力条件未知时人为地具有能力。两种主要方法用于制备人工能力细胞:1)通过细胞的化学处理,2)将细胞暴露于电脉冲(电穿孔)。前者使用不同的化学物质,具体取决于在DNA和细胞表面之间产生吸引力的程序,而后者使用电场在细菌细胞膜中产生孔隙,DNA分子可以通过这些孔进入。化学能力最有效的方法是用二价阳离子孵育,最显著的是钙(Ca2+)(4,5) 钙诱导能力是这里描述的程序 (6).该方法主要用于革兰氏阴性细菌的转化,是本方案的重点。
化学转化过程涉及一系列步骤,其中细胞暴露于阳离子诱导化学能力。这些步骤随后是温度变化 – 热休克 – 有利于由主管细胞(7)摄取外来DNA。细菌细胞包络呈负电荷。在革兰氏阴性细菌,如大肠杆菌,外膜是负电荷由于存在脂多糖(LPS)(8 )。这导致同样带负电荷的DNA分子排斥。在化学能力诱导中,带正电荷的钙离子中和这种电荷排斥,使DNA吸收到细胞表面(9)。钙处理和脱氧核糖核酸的孵育在冰上进行。随后,在较高温度(42°C)下进行孵育,进行热冲击。这种温度不平衡进一步有利于DNA的摄取。细菌细胞需要在中指数生长阶段,以承受热冲击处理;在其他生长阶段,细菌细胞对热量过于敏感,导致生存能力丧失,从而大大降低转化效率。
不同的DNA来源可用于转化。通常,在大肠杆菌的大多数实验室程序中,质粒、小圆形、双链DNA分子用于转化。要在转化后在细菌细胞中维持质粒,它们需要包含复制的来源。这使得它们可以在细菌细胞中独立于细菌染色体复制。并非所有的细菌细胞在转化过程中都得到转化。因此,转化产生转化细胞和非转化细胞的混合物。为了区分这两个群体,使用一种选择方法来识别获得质粒的细胞。疟原虫通常含有可选择的标记物,这些标记是编码一种具有生长优势的特征的基因(即对抗生素或化学物的抗药性或从生长辅助体中拯救)。转化后,细菌细胞被镀在选择性培养物上,这只允许转化细胞的生长。如果细胞转化,质粒对给定抗生素具有抗药性,选择性培养基将是含有该抗生素的生长介质。有几种不同的方法可以用来确认在选择性培养基中生长的菌落是转化剂(即已经合并了质粒)。例如,质粒可以使用质粒制备方法(10)从这些细胞中恢复,并消化以确认质粒大小。或者,菌落PCR可用于确认存在感兴趣的质粒(11)。
本实验的目的是利用氯化钙程序(12)的适应,制备大肠杆菌DH5+化学能力细胞,并用质粒pUC19对其进行转化,以确定转化效率。大肠杆菌菌株DH5+是分子生物学应用中常用的菌株。由于其基因型,特别是recA1和endA1,这种菌株可以提高插入稳定性,并在随后的制剂中提高质粒DNA的质量。由于转化效率随着DNA尺寸的增加而降低,因此,由于质粒pUC19体积小(2686 bp),因此在本协议中使用了质粒pUC19(参见https://www.mobitec.com/cms/products/bio/04_vector_sys/standard_cloning_vectors.html矢量映射)。pUC19对青霉素具有抗药性,因此,这是用于选择的抗生素。
该协议描述了使用氯化钙程序(12)的适应,制备和转化合格的大肠杆菌DH5+。
1. 设置
重要,本协议中的所有步骤都需要使用无菌技术,在冰或4°C温度下执行,除非另有说明。
2. 议定书
组件 | 量 |
10X 限制消化缓冲器 | 2.5 μl |
疟原虫 pUC19 | 1 μg |
欣德Ⅲ | 1 μl |
H2O | 20.5 μl (至 25 μl) |
图2:从转化的DH5+细胞中消化恢复的质粒DNA。疟原体DNA是从经过改造的DH5®细胞中恢复的,用HindIII消化,在1%的角胶凝胶中运行,并用紫外线源(步骤2.19至2.22)可视化。
3. 数据分析和结果
为了计算转化效率,这是细胞在细胞外DNA中所占的一个指标,需要计算在转化中获得的菌落:
稀释 | 克福 |
1/100 | 34 |
1/10 | 246 |
表1:从变换实验中计算的菌落成形单位(cfu)。
转化效率 (TE) 是将 1 μg 质粒转化为给定容量的合格细胞所产生的 cfu 数量的度量。许多参数影响转化效率:质粒大小、细胞基因型、能力制备期间的生长阶段、转化方法等。在计算 TE 时,必须考虑在电镀之前执行了稀释(如果有),并将其纳入 cfu 的总数计算中。转换效率 (TE) 使用以下公式计算:
首先将 cfu 除以 DNA 的 μg,在此示例中为 0.0001μg。然后除以稀释系数的结果。在此示例中,使用 1/10 稀释,1 ml 溶液的 100μL 被镀(稀释: 1/10 × 100 μL /1000 μL = 0.01)。
细菌具有显著的适应性,促进这种适应的一个机制是它们能够接受外部DNA分子。细菌可以接受的一种DNA称为质粒,一种经常包含有用信息(如抗生素耐药性基因)的圆形DNA。细菌被来自外部来源的新遗传信息修饰的过程称为转化。使用大肠杆菌或大肠杆菌,可以在实验室中轻松进行转化。
为了被转化,大肠杆菌细胞必须首先变得称职,这意味着能够从他们的环境中获取DNA分子。实现此目的的协议非常简单,在氯化钙溶液中短暂孵育细胞。这种孵育使细胞变得可渗透DNA分子。细胞通过离心颗粒后,上清液被去除。质粒DNA现在被添加到有能力的细胞中。用DNA孵育细胞后,将混合物短暂加热到42摄氏度,随后在冰上快速冷却。这种热冲击导致DNA在细胞壁和膜上转移。然后,细胞在新鲜的培养中孵育。然后,将细菌置于37度,以使它们重新密封膜并表达抗性蛋白质。
那些接受质粒的细胞将忠实地复制DNA,并将其传给其后代,并表达任何可能由它编码的蛋白质,包括抗生素耐药性中介。这些抗性基因可用作可选择的标记物,以识别已经成功转化的细菌,因为未接受质粒的细胞不会表达抗性基因产物。这意味着,当细胞被镀在含有适当抗生素的固体介质上时,只有已经接受质粒的细胞才会生长。在从样本中提取DNA之前,通过在液体培养物中培养这些细胞来增加产量,可以进一步确认生长菌群中细胞的转化。一旦DNA被分离,就可以进行诊断限制酶消化。由于限制性酶在可预测的位置切割DNA,因此,如果所需的质粒成功转化,在凝胶上运行这些消化体应能显示可预测的模式。例如,如果使用限制性酶 HindIII 制备并切割 pUC19,则应在凝胶上看到 2686 核苷酸的单带。
在本实验中,您将用pUC19转化大肠杆菌菌株DH-5 Alpha,然后确认DNA凝胶电泳的成功转化。
在开始手术之前,请穿上适当的个人防护装备,包括实验室外套和手套。接下来,用 70% 乙醇对工作空间进行消毒。
现在,通过将充满细菌的循环沉积在无菌 LB 琼脂板上,用新的循环将细菌条纹,制备具有化学能力的细胞。然后,在37摄氏度的温度下孵育。第二天,再次用70%乙醇对台面进行消毒,然后从培养箱中取出盘子。
在具有无菌循环的管中,将单个隔离良好的菌群接种成 3 毫升 LB 肉汤。然后,在37摄氏度的温度下生长,在210 RPM下摇动。第二天,用分光光度计测量过夜培养的光学密度。然后,将 100 毫升 LB 肉汤加入一升烧瓶中,并在光学密度为 0 的过夜培养中接种。01. 现在,在37摄氏度的温度下用摇动孵育培养,每15至20分钟检查OD600,直到培养达到中度生长阶段。
约三小时后,将50毫升的培养剂转移到两个冰冷的聚丙烯瓶中。然后,将瓶子放回冰上20分钟冷却。接下来,通过离心恢复细胞。丢弃上生物,将瓶子倒置放在纸巾上。接下来,将细菌颗粒重新悬浮在五毫升冰冷的氯化钙氯化镁溶液中,并小心旋转,直到颗粒完全溶解。然后,再向溶解的细菌颗粒中加入25毫升的溶液。如前所述,重新悬浮其他细菌颗粒。在此之后,重复离心,并删除上生子。
如果主管细胞要直接转化,请小心地旋转管,将每个细菌颗粒重新悬浮在两毫升冰冷的 0.1 摩尔氯化钙溶液中。要开始转化过程,将 50 微升的合格细胞转移到两个标有 1.5 毫升的聚丙烯管中。然后,在其中一个管中加入一微升的pUC19质粒DNA。轻轻混合,避免气泡形成,并在冰上孵育两管30分钟。孵育后,将管子转移到热块,并在42摄氏度下孵育45秒。立即将管子转移到冰上,孵育两分钟。现在,在每个管中加入950微升的SOC培养基,在37摄氏度的温度下孵育一小时,使细菌得以恢复,并表达在质粒中编码的抗生素耐药标记。
要进行 1 到 100 的稀释,将 990 微升 SOC 介质和 10 微升电池悬浮液添加到 1.5 毫升的管中。然后,通过在1.5毫升管中加入900微升的SOC介质和100微升的细胞悬浮液,进行1至10的稀释。接下来,将100微升的稀释细胞悬浮液和100微升的负控制,放在含有阿霉素的单独选择性板上,使用扩张器在37摄氏度下孵育板12至16小时。孵育后,计算通过转化获得的每个板的菌落形成单位或CFU,并记录这些数据。为了验证转化剂是否具有pUC19质粒,从具有无菌循环的板中挑选一个隔离良好的菌落,并将其引入含有3毫升LB汤的管中。然后,在37摄氏度的温度下,用颤抖,一夜之间孵育文化。第二天,使用DNA迷你准备试剂盒,根据制造商的说明,从3毫升的培养物中分离出DNA。完成DNA小制备后,在37摄氏度下用限制性酶消化1微克的纯化pUC19,1小时。现在,将20微升的分子量阶梯、1微克消化质粒DNA和1微克未消化质粒DNA装入含有每毫升溴化1微克的1%的甘蔗糖凝胶的连续井中。然后,在 95 伏电压下运行凝胶 1 小时。最后,使用紫外线照明器可视化凝胶。
在本实验中,使用氯化钙程序的适应制备大肠杆菌DH5 Alpha化学能力细胞,然后用质粒pUC19进行转化,以确定转化效率。要计算转换效率,请使用记录的 CFU 计数,用于 100 中的 1 和 10 中的稀释,以及 CFU 计数介于 30 和 300 之间的任何其他稀释。首先,在本示例中记录的 CFU 计数 246 除以此处的 DNA 量 ,0001 微克,即镀。然后,这个数字除以稀释系数,用于给每微克的CCFUs的转换效率。在此示例中,使用 1 到 10 稀释,1 毫升溶液的 100 微升被镀,最终稀释系数为 0.01。在未消化的质粒通道中,圆形DNA可能显示为两个或三个不同亮度的波段。这是因为圆形、未切割的DNA可能存在于几个不同的构象状态中,如超卷曲、开放圆或更线性,并且每个DNA以不同的速率在凝胶中移动。对恢复的质粒DNA消化分析表明,所使用的质粒具有预期大小的pUC19DNA,2,686个碱基对。
虽然TE取决于许多因素,但非商业能力细胞制剂,如这种,通常产生106至107转化剂每微克质粒。因此,这种制备,与TE = 2.46 x 108 cfu/μg,产生TE远远超出预期范围。当给定应用需要更高的转换效率时,可以使用附加协议来制造超能的单元(13)。
对从转化细胞中恢复的质粒DNA的消化分析表明,该质粒具有pUC19DNA(2686 bp)的预期大小。
转化是一种将外源DNA引入细菌细胞的有力方法,是实验室中许多分子生物学应用的关键。此外,它通过在自然界中发挥重要作用,允许细菌细胞交换遗传物质,从而增加遗传变异,并允许获得不同的有益特性,以便在各种条件下生存。许多细菌菌株编码自然能力所需的基因。然而,这些基因的诱导条件仍然未知。需要进一步的研究来确定这些条件。
Bacteria are remarkably adaptable and one mechanism which facilitates this adaptation is their ability to take in external DNA molecules. One type of DNA that bacteria can uptake is called a plasmid, a circular piece of DNA that frequently contains useful information, such as antibiotic resistance genes. The process of bacteria being modified by new genetic information incorporated from an external source is referred to as transformation. Transformation can easily be performed in the laboratory using Escherichia coli, or E. coli.
In order to be transformed, E. coli cells must first be made competent, which means capable of taking in DNA molecules from their environment. The protocol for accomplishing this is surprisingly simple, a short incubation of the cells in a calcium chloride solution. This incubation causes the cells to become permeable to DNA molecules. After the cells are pelleted by centrifugation, the supernatant is removed. The plasmid DNA is now added to the competent cells. After incubating the cells with DNA, the mix is briefly heated to 42 degrees Celsius, followed by rapid cooling on ice. This heat shock causes the DNA to be transferred across the cell’s wall and membranes. The cells are then incubated in fresh media. Then, the bacteria are placed at 37 degrees to allow them to reseal their membranes and express resistant proteins.
Those cells which have taken in the plasmids will faithfully copy the DNA and pass it to their progeny and express any proteins that might be encoded by it, including antibiotic resistance mediators. Those resistance genes can be used as selectable markers to identify bacteria which have been successfully transformed because cells that have not taken up the plasmid will not express the resistance gene product. This means that when the cells are plated on a solid medium which contains the appropriate antibiotic, only cells that have taken up the plasmid will grow. Transformation of the cells in a growing colony can be further confirmed by culturing those cells in liquid media overnight to increase the yield before extracting the DNA from the sample. Once the DNA is isolated, a diagnostic restriction enzyme digest can be carried out. Because restriction enzymes cut DNA in predictable locations, running these digests on a gel should show a predictable pattern if the desired plasmid was successfully transformed. For example, if pUC19 is prepared and cut with the restriction enzyme HindIII, a single band of 2686 nucleotides should be seen on the gel.
In this lab, you will transform E. coli strain DH-5 Alpha with pUC19, and then confirm the successful transformation by DNA gel electrophoresis.
Before starting the procedure, put on the appropriate personal protective equipment, including a lab coat and gloves. Next, sterilize the workspace with 70% ethanol.
Now, prepare chemically competent cells by depositing a loopfull of bacteria onto a sterile LB agar plate and streaking the bacteria with a new loop. Then, incubate the plate at 37 degrees Celsius overnight. The next day, sterilize the bench top with 70% ethanol again, and remove the plate from the incubator.
Inoculate a single, well-isolated colony into 3 milliliters of LB broth in a tube with a sterile loop. Then, grow the culture at 37 degrees Celsius overnight, with shaking at 210 RPM. The next day, measure the optical density of the overnight culture with a spectrophotometer. Then, add 100 milliliters of LB broth to a one-liter flask, and inoculate it with the overnight culture at an optical density of 0. 01. Now, incubate the culture at 37 degrees Celsius with shaking, and check the OD600 every 15 to 20 minutes until the culture reaches mid-exponential growth phase.
After approximately three hours, transfer 50 milliliters of the culture to two ice-cold polypropylene bottles. Then, place the bottles back on ice for 20 minutes to cool. Next, recover the cells via centrifugation. Discard the supernatants and place the bottles upside down on a paper towel. Next, resuspend the bacterial pellet in five milliliters of ice-cold calcium chloride magnesium chloride solution and swirl carefully until the pellet has dissolved completely. Then, add another 25 milliliters of the solution to the dissolved bacterial pellet. Resuspend the other bacterial pellet as previously demonstrated. After this, repeat the centrifugation, and remove the supernatants.
If the competent cells are going to be directly transformed, resuspend each bacterial pellet in two milliliters of an ice-cold 0.1 molar calcium chloride solution by swirling the tubes carefully. To begin the transformation procedure, transfer 50 microliters of competent cells to two labeled 1.5 milliliter polypropylene tubes. Then, add one microliter of pUC19 plasmid DNA to one of the tubes. Mix gently, avoiding bubble formation, and incubate both tubes for 30 minutes on ice. After incubation, transfer the tubes to a heat block and incubate at 42 degrees Celsius for 45 seconds. Immediately transfer the tubes to ice, and incubate for two minutes. Now, add 950 microliters of SOC media to each tube and incubate them for one hour at 37 degrees Celsius to allow the bacteria to recover, and express the antibiotic resistant marker encoded in the plasmid.
To make a 1 to 100 dilution, add 990 microliters of SOC media and 10 microliters of cell suspension to a 1.5 milliliter tube. Then, make a 1 to 10 dilution by adding 900 microliters of SOC media and 100 microliters of cell suspension to a 1.5 milliliter tube. Next, plate 100 microliters of the diluted cell suspensions and 100 microliters of the negative control, onto separate selective plates containing ampicillin using a spreader and incubate the plates at 37 degrees Celsius for 12 to 16 hours. After incubation, count the colony-forming units, or CFUs, per plate, obtained through transformation, and record these data. To verify that the transformants have the pUC19 plasmid, pick a single, well-isolated colony from a plate with a sterile loop, and introduce it to a tube containing 3 milliliters of LB broth. Then, incubate the culture at 37 degrees Celsius with shaking, overnight. The next day, use a DNA mini prep kit to isolate DNA from 3 milliliters of the culture, according to the manufacturer’s instructions. After completing the DNA mini prep, digest the 1 microgram of purified pUC19 with a restriction enzyme at 37 degrees Celsius for 1 hour. Now, load 20 microliters of a molecular weight ladder, 1 microgram of digested plasmid DNA, and 1 microgram of undigested plasmid DNA into consecutive wells of a 1% agarose gel containing 1 microgram per milliliter ethidium bromide. Then, run the gel for 1 hour at 95 volts. Finally, visualize the gel with a UV illuminator.
In this experiment, E. coli DH5 Alpha chemically competent cells were prepared using an adaptation of the calcium chloride procedure, and then transformed with the plasmid pUC19 to determine transformation efficiency. To calculate the transformation efficiency, use the recorded CFU counts for the 1 in 100 and 1 in 10 dilutions, and any other dilutions with CFU counts between 30 and 300. First, the recorded CFU count, 246 in this example, is divided by the amount of DNA, .0001 micrograms here, that was plated. Then, this number is divided by the dilution factor used to give the transformation efficiency in CFUs per microgram. In this example, a 1 to 10 dilution was used and 100 microliters of a 1 milliliter solution was plated, giving a final dilution factor of 0.01. In the undigested plasmid lane, the circular DNA may appear as two or three different bands of varying brightness. This is because the circular, uncut DNA may exist in several different conformation states, such as supercoiled, open circle, or more linear, and each of these move through the gel at different rates. Analysis of the recovered plasmid DNA digestion indicated that the plasmid used has an expected size of pUC19 DNA, 2,686 base pairs.
Related Videos
Microbiology
128.0K 浏览
Microbiology
313.7K 浏览
Microbiology
131.7K 浏览
Microbiology
165.6K 浏览
Microbiology
187.7K 浏览
Microbiology
292.6K 浏览
Microbiology
93.4K 浏览
Microbiology
362.3K 浏览
Microbiology
185.5K 浏览
Microbiology
86.2K 浏览
Microbiology
38.0K 浏览
Microbiology
28.9K 浏览