离心机是一种在全球几乎所有研究实验室都使用的仪器。离心是指使用离心机来分离复杂混合物组分的过程。在很高速度下离心实验样品,混合物中的组分会受到离心力的影响,使得较高密度的颗粒离开轴心方向移动,而密度小的颗粒则朝向轴心方向移动。这些颗粒会沉积在管底,形成所谓的沉淀物,分离得到的剩余上清,可用作进一步处理或者分析。
本短片将给学生介绍一些离心的基本原理以及仪器的基本操作。例如,用于衡量离心级数的离心速度RPM,即每分钟的旋转次数,相对离心力RCF不同,后者与转头大小无关。除了概念和基本应用,这里还将讨论与离心有关的安全防护,以及现有的离心种类和离心转头。
离心机是一种全球几乎所有研究实验室都在使用的仪器。
离心是一个基本的实验室操作过程,它使用离心机来分离复杂混合物中的组分。
在极高速度下离心实验样品,混合物中的组分会受到离心力的影响,使得较高密度的颗粒离开轴心方向移动,而密度小的颗粒则朝向轴心方向移动。
这些颗粒会沉积在管底,形成所谓的沉淀物,这样分离得到的样品,或被称为上清的余液,都可用作进一步处理或者分析。
离心机的主要元件是转头,它是高速离心时转动的部件。
转头可以被固定在离心机上,也可以是一个离心机使用多个转头,将它们装在称为主轴的部件上。
离心机转头通常还带有一个盖子,能紧紧拧上盖住,防止样品飞出来。
许多离心机会有一个制冷单元,它可以保持内部温度在离心时得到控制。
离心机上还有旋钮或按钮用以输入每次离心所需要的参数:
包括离心时间、温度、和离心快慢,它可以是以速度或以相对离心力为单位。
离心速度用RPM来计量,即每分钟的旋转次数。RPM值有时有误导性,因为造成颗粒从混合物中分离出来的不是离心的速度,而是作用在这些颗粒上的作用力。
这种作用力与离心机转头的半径相关,由于不同的离心机有不同的转头大小,这样在同一个RPM速度下,产生的作用力会有不同。
离心力也可以用RCF相对离心力来定量。RCF通常表现为地球重力加速度的倍数。
RCF的计算公式是转头半径乘以角速度平方,然后除以地球的重力加速度。
RCF通过下面的公式和RPM相关,其中r代表离心机的半径,以厘米为单位。
对该公式的使用可能会影响到实验的成功或失败,但您不必在每个新的操作中都采用这种计算方法。离心机通常都附带了图表来帮助简单地换算RCF和RPM。用一个尺子连接离心机的半径和一个已知的RPM数值,就可以得到RCF数值。
在开始离心您的样品之前,先要考虑温度。如果您在使用一个冷冻离心机,那么在开始前需要让仪器内部的温度达到您的理想值,或者用别的方法来给转头降温。
离心即将开始前,需确定您所有的管盖都盖紧不会松开了。
在将离心管放入转头时,要保证每个样品和另一个相对位置的样品重量一致。
如果您只有一个离心管,那就要找到另一个等重的离心管来保证平衡。
如果您有三个同样重量的离心管,可以将它们摆成一个三角位置以保证相互平衡。
重量平衡在离心中非常重要。离心机的转头在高速运动中有很高的动态能量。如果没有正确平衡好,整个离心单位会脱离它所在的位置,造成严重的损害。
一旦您确定转头和盖子都固定好了,就可开始离心,在速度达到您设定的最高转速前不要离开。如果您发现问题,找一个有经验的实验人员来帮助您。
离心结束后,您应当会看见您的生物学样品位于离心管底部的沉淀中。它已经从称为上清的余液中分离出来了。
可以通过倾倒,也就是直接倒出来去除上清,也可将上清吸出,就是用真空吸力将其吸出。
纯化的样品可以被重新放回溶液中,这个过程称之为重悬。重复离心细胞,然后吸出上清留下细胞,再用缓冲液重悬细胞,这个过程称之为细胞洗涤。
现在您已经看到一些基本的离心技术,下面再来看一下一些离心机的类型以及您要进行的操作过程。
固定角转头离心机可能是您在实验室里最常见到的。许多台式离心机就是这种类型。
在这种离心机中,离心管呈固定的角度放置,它适用于差异离心方法。在这些方法中,可应用一系列不同速度的离心来纯化多种生物样品,例如动物细胞。通常这些方法会包括几个细胞洗涤步骤。
与固定角转头不同,甩平式转头有灵活的离心管支架,使得样品在旋转时向外甩起。这种转头对某些应用很有帮助,如密度梯度离心,可将生物样品在密度梯度介 质中分离到不同的密度层。这种离心有助于快速分离不同的细胞类型,或者分离某种单独的细胞器。
最后,超速离心机是实验室中所有离心机的老大哥。它的离心速度可以超过70,000RPM。这样它可以用来分离小颗粒,例如DNA或者病毒。
因为这种离心机的高速度,要格外小心来保证它的样品承载得到了正确的平衡,并要确保转头和转头盖都是牢固的。
您刚观看的是JoVE对离心机的介绍。本短片中,我们回顾了:什么是离心机以及它是怎样工作的;如何操作和使用离心机;一些安全措施和离心技术的不同应用。感谢您的观看,记得平衡您的离心管哦。
The centrifuge is an instrument used in nearly every biomedical research lab across the globe.
Centrifugation is a process by which a centrifuge is used to separate components of a complex mixture.
By spinning laboratory samples at very high speeds, the components of a given mixture are subjected to centrifugal force, which causes more dense particles to migrate away from the axis of rotation and lighter ones to move toward it. These particles can sediment at the bottom of the tube into what’s known as a pellet, and this isolated specimen, or the remaining solution, the supernatant, can be further processed or analyzed.
The principle component of a centrifuge is the rotor, which is the moving part that spins at high speeds.
Rotors can be fixed in position, or a centrifuge can use multiple rotors fixed atop part called the spindle.
Usually, the centrifuge rotor will have a lid that is screwed down tightly to prevent samples from flying out.
Many centrifuges will have a refrigeration unit that allows the internal temperature to be controlled during the spin.
They also have knobs or buttons for inputting the parameters for each run, which can include the duration of the spin, the temperature, and the magnitude of the spin in terms of speed or relative force.
Spin speed is measured as RPM, or revolutions per minute. RPM is tricky value, because it’s not the speed of the centrifuge that causes particles to separate from a mixture, but the force acting on these particles.
The force acting on a particle is related to the radius of the centrifuge rotor, and since different centrifuges have different rotor sizes, different forces can be applied at the same speed, or RPM.
Centrifugation strength can also be quantified as Relative centrifugal force, or RCF. RCF is generally presented as a multiple of earth’s gravitational acceleration.
RCF is expressed as the product of the radius of the rotor and the square of the angular velocity divided by earth’s gravitational acceleration.
RCF can be related to RPM by the following equation, where r stands for the radius of the centrifuge measured in centimeters.
Using this equation can mean the difference between a failed or successful experiment, but you don’t have to apply this calculation for every new procedure. Centrifuges often come with nomograms that can help convert RCF to RPM quite easily. Use a ruler to connect the radius of the centrifuge and a given RPM value, in order to obtain RCF.
To begin spinning your samples consider temperature. If you are using a refrigerated centrifuge, then you will want the machines internal temperature to reach the desired value before starting the spin, or you can find other ways to cool the rotor.
Immediately before a spin ensure all of the caps on your tubes are tightened and secure.
When you loading your tubes, ensure that each sample is counterbalanced with another sample directly across from it.
If you’ve only got one tube, then make another tube that can act as a counterweight.
If you’ve got three tubes, you can arrange them in a triangle so they are equidistant from each other.
Balancing weights in a centrifuge is critical. Centrifuge rotors reach high speeds and have a lot of kinetic energy. If improperly balanced, the entire centrifuge unit can be propelled from its resting place and do serious damage.
Once you confirm that the rotor and lid are secure, start the centrifuge and hang around until it’s reached the desired speed. If you notice a problem call and experienced member of the lab to come help you.
When your centrifugation is complete, you should be able to see your biological specimen at the bottom of the tube in a pellet, which has separated from the rest of the solution, or supernatant.
The supernatant can be removed by either decanting it – a fancy name for pouring it off, or it can be aspirated – a fancy term for using suction to remove it.
The purified specimen can then be returned to a solution via a process called, resuspending. Repetitions of centrifuging, or spinning cells, followed by aspirating cells, and resuspending in buffer, is often referred to as, washing cells.
Now that you’ve seen some basics of centrifugation, its time to have a look at some of the types of centrifuges out there and the procedures you can carry out with them.
Fixed angle rotor centrifuges are probably the most common type of this instrument you’ll encounter in the lab. Many table top centrifuges fit in this category.
These centrifuges, in which tubes sit in a fixed and angled position, are used in differential centrifugation protocols. In these protocols, a series of centrifugations at different speeds can be used to purify biological specimens like animal cells. Typically, these protocols involve several cell washing steps.
In contrast to fixed angle rotors, swing rotors have flexible tube holders allow samples to rotate outward. These rotors are beneficial in applications like density gradient centrifugation, where biological samples migrate to distinct layers of gradient media. This type of centrifugation is useful for quickly isolating one cell type from another, or for isolating individual organelles.
Lastly, the ultracentrifuge is the big brother of all the centrifuges you’ll find in the lab. It can spin in excess of 70,000 rpm, which makes it well suited for the isolation of small particles, like DNA or viruses.
Because of the high speeds of this centrifuge extra care should be taken to ensure that the loads are properly balanced and that both the rotor and lid are secure.
You’ve just watched JoVE’s introduction to Centrifugation. In this video we reviewed: what a centrifuge is and how it works, how to operate and run a centrifuge, some safety precautions, and different applications of your centrifugation. Thanks for watching and remember to balance your tubes.
General Laboratory Techniques
484.7K 浏览
General Laboratory Techniques
125.3K 浏览
General Laboratory Techniques
214.9K 浏览
General Laboratory Techniques
210.3K 浏览
General Laboratory Techniques
574.8K 浏览
General Laboratory Techniques
218.0K 浏览
General Laboratory Techniques
205.1K 浏览
General Laboratory Techniques
149.2K 浏览
General Laboratory Techniques
170.4K 浏览
General Laboratory Techniques
514.3K 浏览
General Laboratory Techniques
239.6K 浏览
General Laboratory Techniques
348.8K 浏览
General Laboratory Techniques
812.1K 浏览
General Laboratory Techniques
65.4K 浏览
General Laboratory Techniques
81.0K 浏览