分光光度计是一种在科学研究中经常会用到的仪器。它用来定量测量分光光度计中穿过样品的光线有多少被化学物质吸收。本短片将回顾分光光度计的基本概念,包括透射率,吸光度和比尔-朗伯定律,还将讲述分光光度计的组成部分。这些概念是利用溶液对紫外或可见光的吸收来确定溶质在溶液中的浓度的基础。然后演示了操作分光光度计的一个过程,包括如何在特定的波长条件下对样品的吸收度进行调零和测量。本视频还讲述了如何制作标准曲线来测定分析物的浓度。还讨论了分光光度计在生物学研究中的一些应用。最后介绍了微量分光光度计及它在测量蛋白和核酸样品浓度和纯度中的优势。
配制溶液是几乎所有生物和化学实验要用到的一项必备的操作技术。
溶液是一种物质溶解于液体中。溶解的物质称为溶质,而溶解物质的液体称为溶剂。随之产生的均一混合物称为溶液。
溶液可以用它们的溶质浓度来描述,即单位体积溶液内的溶质的量。
配制溶液虽然是一项基本实验技能,但技术的优劣足以影响实验的成败。
配制溶液需要考虑的第一件事是安全。采取合适的安全措施是十分重要的,例如根据需要使用的化学物质佩戴手套和实验服。
配制溶液的方法有很多。本短片将阐述配制水溶液最常用的方法。
首先根据所需要的溶液体积和浓度来确定溶质的摩尔数。而后根据化学分子的分子量,或者说是每摩尔克数,将其转换成为质量的克数。
然后使用数码天平和称量皿称取所需要的化学物质。
用带刻度的量筒量取大约四分之三终体积的水。
量取的水应该是纯化水,而不是自来水,这一点非常重要。否则,不但会影响溶液本身的质量,而且会影响多个后续实验的结果。
至此,纯化水应当被转移到一个烧杯当中,放入磁力搅棒,而后置于磁力搅拌器上。
将称取的溶质加入正在搅拌的纯化水中。磁力搅棒的搅拌可以帮助溶质溶解。有时加热也有助于溶解。
一旦所有的溶质溶解于溶剂中,就可以使用酸度计来调节溶液的pH值。要使pH值升高,可以向搅拌的溶液中加入稀释的氢氧化钠;要使pH值降低,则要加入稀释的盐酸。切记要缓慢的加入酸或者碱,因为pH值会变化很快。
pH试纸能够用于测量溶液的pH值。而使用校正过的酸度计则能够得到更准确的测量值。
使用漏斗将溶液倒入一个可以测量体积的容量瓶中,这样可以定到最终体积。加入足够量的溶剂使得体积达到最终需要的体积称之为定容。
记住半月形的液面要到达容量瓶的刻度线。在水溶液当中,半月形的液面是凹陷的,所以应当使液面的最低点与刻度线一致。
在生物学研究当中,尤其涉及到活细胞时,溶液在使用之前应当是无菌的。这可以通过高压灭菌来实现,即在高压环境下将溶液置于高温蒸气中灭菌。
或者也可以将溶液用0.22微米的滤纸过滤,这样可以除去所有的细菌细胞。
现在你已经对如何配制溶液有了基本的了解,接下来就来看一下实验室内常备的一些溶液以及它们的应用。
在生物学研究中,很多溶液是用来模拟生理环境的。这些溶液属于缓冲液,即在特定范围内它们能够耐受pH的变化;通常条件下,pH值在7.4左右以模拟细胞内和细胞外液环境。
磷酸盐缓冲液,又称PBS,是一种生物学研究中常用的缓冲液,用于模拟生理pH和渗透压。渗透压是指溶液当中所有溶质的摩尔数。例如,含有1摩尔每升氯化钠的溶液,它的渗透压是2个渗透压摩尔。因为在溶液中,氯化钠解离成为钠离子和氯离子。磷酸盐的离子浓度很接近于细胞环境,使得她成为一种等渗溶液。这意味着细胞外部的溶质总量等于细胞内部。磷酸盐缓冲液是由几种包括磷酸根在内的不同的盐溶于水中所得,它可以使pH值保持在7.2到7.6之间恒定的范围。
磷酸盐缓冲液通常用于洗涤细胞和稀释生物大分子,例如蛋白质。
人工脑脊液,或称为ACSF,用于模拟脑脊液中的电解质浓度。这种溶液必须新鲜制备。它的pH值、渗透压、以及离子组分必须严格控制以达到和体内环境一致的要求。
在电生理研究中,脑组织被切片后浸入ACSF缓冲液。该缓冲液还可以在膜片钳测量过程中用作细胞外溶液。
任氏液是生物学研究中用到的一种平衡过pH值的等渗盐溶液。它通常用于器官和组织的体外实验。
您刚观看的是JoVE关于配制溶液的短片。本短片中,我们回顾了从开始到结束如何配制溶液,包括如何确定溶质的需要量;如何恰当地足量配制溶液;溶液灭菌的方法;我们还介绍了一些常用的溶液以及他们在生物学研究中的用途。
感谢您的观看,请记住,一定要使用恰当的操作来配制溶液。
较新的分光光度计直接和计算机相连,这样实验数据能够被马上处理并直接显示。
在使用分光光度法的时候,一定要采取合适的安全措施。例如根据生物或者化学溶液的类型来决定佩戴手套。
在测量样品的紫外可见光谱之前,先打开仪器让灯管和电子元件预热。
配置具有相同的pH值和类似离子强度但无溶质的相同溶液作为空白对照。这一步是必须的,因为细胞和溶剂都会散射一部分光线。
在传统的分光光度计中,样品槽被设计成用于容纳塑料和水晶比色杯。操作中首先向比色杯中加入空白溶液。
擦净比色杯外表面所有的指纹和漏出的溶液,将其置于样品槽中,然后关上样品室的门。
切记关闭样品室的门,否则分光光度计的紫外光辐射会损伤眼睛和皮肤。
设定样品透射光所需要的波长或者波长范围,这个取决于被检测物质吸收的最佳波长。然后,通过读取空白对照对仪器调零。从而除去样品缓冲液的背景吸收。
根据分光光度法的实验种类,可能在测量样品之前需要建立一个标准曲线。在标准曲线的基础上你可以得出被分析样品的最终浓度。
将样品置于合适的温度然后轻轻混匀,并避免气泡的出现。再将样品直接加入比色杯中,置入分光光度计,然后读数。
在对样品进行吸光度测定之后,再对你的实验进行适当的运算;例如浓度的估算或者酶活力的测定。
许多生物学研究实验室中每天都会用到分光光度计。
分光光度计的一个常见的应用是测量细胞密度。细胞密度的测定对于制作细菌的对数生长曲线非常有用,由此可以得到诱导重组蛋白的最佳时间。
分光光度计还可以用于测定化学反应速率。在这个例子中,通过测定一个反应中间物(光吸收452纳米)随时间的消失来监测酶促反应。将数据代入适当的公式,就可以计算酶催化反应的速率。
近来,使用微量体积的分光光度计可以消除使用样品槽的必要性。这种分光光度计利用表面张力来承载样品。
微量体积分光光度计是测量有限体积的昂贵样品的质量和浓度的最佳选择。例如生物分子,包括蛋白质与核酸。
蛋白质在280纳米处的光吸收取决于芳香环侧链的含量。芳香环侧链通常存在于色氨酸、酪氨酸以及苯丙氨酸当中。硫氨酸中的二硫键在此处也有吸收。
蛋白质浓度可根据它在280纳米处的光吸收而测得,而它的消光系数是基于蛋白质的氨基酸组成。
脱氧核糖核酸和核糖核酸都在260纳米处有最大光吸收,它们的浓度可以由此决定。通过计算在特定波长处的光吸收的比值可以检测核酸的纯度。
您刚观看的是JoVE对分光光度计的介绍。在本视频中,我们回顾了一些基本原理,包括分光光度法的概念和分光光度计的组成。我们还逐步阐述了分光光度计的操作并讨论了它在生物学研究中的应用。感谢观看。
The spectrophotometer is a ubiquitously used instrument in biological, chemical, clinical and environmental research.
Spectrophotometry is the quantitative measurement of how much a chemical substance absorbs light by passing a beam of light through the sample using a spectrophotometer.
By measuring the intensity of light detected, this method can be used to determine the concentration of solute in the sample.
The beam of light that is radiated toward the sample is made up of a stream of photons.
When photons encounter molecules in the sample, the molecules may absorb some of them, reducing the number of photons in the beam of light and decreasing the intensity of the detected signal.
Transmittance is the fraction of light that passes through the sample and is defined as the intensity of light passing through the sample over the intensity of incident light. Absorbance is the inverse logarithm of transmittance and is the quantity your spectrophotometer will measure.
From the absorbance, the concentration of the sample solution can be determined from the Beer-Lambert Law, which states that there is a linear relationship between the absorbance and concentration of a sample. According to the Beer-Lambert Law, absorbance is the product of the extinction coefficient, a measure of how strongly a solute absorbs light at a given wavelength, the length that light passes through the sample, or path length, and the concentration of solute. Often, the goal to taking absorbance measurements is to measure the concentration of a sample.
Each spectrophotometer includes a light source, a collimator, which is a lens or focusing device that transmits an intense straight beam of light, a monochromator to separate the beam of light into its component wavelengths, and a wavelength selector, or slit, for selecting the desired wavelength. The wavelengths of light used in spectrophotometers discussed in this video are in the ultraviolet and visible range. The spectrophotometer also includes some sort of sample holder, a photoelectric detector, which detects the amount of photons that are absorbed, and a screen to display the output of the detector.
Newer spectrophotometers are directly coupled to a computer, where the experiment parameters can be controlled and results are displayed.
When performing spectrophotometry, be sure to take appropriate precautions, such as wearing gloves, depending on the type of biological or chemical solutions you are working with.
Before measuring the UV-visible spectrum of a sample, turn on the machine and allow the lamps and electronics to warm up.
Prepare a blank of the same solution but without the analyte, having the same pH and similar ionic strength; a necessary step as the cell and solvent can scatter some light.
Traditional spectrophotometer sample holders are designed to hold plastic and quartz cuvettes. Proceed to pipette the blank solution into the cuvette.
After wiping any fingerprints and spills off the outside of the cuvette, properly insert the cuvette in the sample holder and close the door to the cuvette compartment.
Never forget to close the door as UV radiation emitted from an open spectrophotometer can damage the eyes and skin.
Set the desired wavelength or wavelength range to be transmitted at the sample, which depends on the optimal wavelength of light that the analyte absorbs. Then, zero the instrument by taking a reading of the blank, which will subtract the background from your sample buffer.
Depending on the type of spectrophotometric experiment you are performing, it may be necessary to generate a standard curve prior to sample measurement, from which the concentration of your sample analyte can eventually be determined.
Allow the sample to reach the appropriate temperature and mix it gently, so that bubbles are not introduced. The sample can them be added directly to the cuvette, within the instrument, and a reading taken.
After performing the absorbance measurement on your sample, proceed to the appropriate calculation for your experiment; for example determination of concentration or the rate of enzyme activity.
The spectrophotometer is used on a daily basis in many biological research laboratories.
One common application of the spectrophotometer is the measurement of cell density. Cell density measurement is useful in generating logarithmic growth curves for bacteria, from which the optimal time for induction of recombinant protein can be determined.
The spectrophotometer can also be used to measure chemical reaction rates. In this example, absorbance is used to monitor an enzymatic reaction by the disappearance of a reaction intermediate at 452 nm over time. The rate of this enzymatic step can be calculated by fitting the data to the appropriate equation.
Recently, the introduction of micro-volume spectrophotometers has eliminated the necessity for sample holders. Such spectrophotometers use surface tension to hold the sample.
Micro-volume spectrophometers are optimal for measuring the quality and concentration of expensive samples of limited volume, such as biomolecules, including proteins and nucleic acids.
The absorbance of a protein at 280 nm depends on the content of aromatic side chains found in tryptophan, tyrosine, and phenylalanine, as well as the existence of cysteine-cysteine disulfide bonds.
Protein concentration can be determined from its absorbance at 280 nm and its extinction coefficient, which is based on the amino acid composition.
Both DNA and RNA have an absorbance maximum at 260 nm from which their concentration can be determined. The purity of the nucleic acid can also be assessed from the ratio of absorbance readings at specific wavelengths.
You’ve just watched JoVE’s introduction to the spectrophotometer.
In this video we reviewed some basic principles, including spectrophotometry concepts and spectrophotometer components. We also demonstrated step by step operation of the spectrophotometer and discussed its usage in biological research. Thanks for watching.
General Laboratory Techniques
484.7K 浏览
General Laboratory Techniques
125.3K 浏览
General Laboratory Techniques
214.9K 浏览
General Laboratory Techniques
210.3K 浏览
General Laboratory Techniques
574.8K 浏览
General Laboratory Techniques
218.0K 浏览
General Laboratory Techniques
205.1K 浏览
General Laboratory Techniques
149.2K 浏览
General Laboratory Techniques
170.4K 浏览
General Laboratory Techniques
514.3K 浏览
General Laboratory Techniques
239.6K 浏览
General Laboratory Techniques
348.8K 浏览
General Laboratory Techniques
812.1K 浏览
General Laboratory Techniques
65.4K 浏览
General Laboratory Techniques
81.0K 浏览