小鼠的基因分型

JoVE Science Education
Biology II: Mouse, Zebrafish, and Chick
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Biology II: Mouse, Zebrafish, and Chick
Mouse Genotyping

88,943 Views

08:27 min
April 30, 2023

Overview

尽管人类基因组在10年前就已经被绘制图谱,科学家们仍然远远没有理解每个人类基因的功能!评估基因功能的一种方法是破坏其编码的序列,然后评估这种变化(表现型)对动物的生物学影响。这种方法通常用在小鼠(小家鼠)中,因为它与人类的遗传学高度相似。要想跟踪好几代携带遗传改变的动物,有必要筛选每只小鼠的DNA,这种方法被称为基因分型。

本短片概述了小鼠基因分型的理论和实际应用。首先介绍了小鼠遗传学的基本原理,包括回顾了纯合子,杂合子,野生型,突变体和转基因的名词。接下来,逐步介绍了从小鼠组织中提取和纯化基因组DNA的方法。我们还提供例子演示了如何分析基因分型结果,以及如何追踪具有所需基因型的小鼠。最后,我们呈现了一些有代表性的基因分型方法的应用以证明为什么这种常用的技术是小鼠研究必不可少的。

Procedure

基因分型是检测某特定DNA序列在一个生物基因组中是否存在的过程。

因为基因可影响小鼠的表型,能够探测单个小鼠的基因组成,或称”基因型”,是将某表型归因于一个特定基因的关键。本短片将探讨小鼠遗传学,演示基因分型方法的关键步骤,并解释如何分析基于PCR的基因分型结果。

为了了解研究人员在做小鼠基因分型时寻找的是什么,让我们回顾一下一些常见的小鼠遗传学操作。

要研究一个基因,科学家们经常通过改变其基因序列破坏其功能。

然而,小鼠是二倍体,所以任何基因它们都有两个拷贝。由于大多数基因只需要一个正常拷贝就能有功能,所以我们在研究表型前必须培育两个基因拷贝都被破坏的小鼠。

这种基因型被称为”纯合敲除型”,或更常见的简称为”基因敲除型”。相反,含两个有功能拷贝的正常小鼠被称为”纯合野生型,”或者”野生型”。最后,将含一个有功能拷贝的小鼠称为”杂合型”或”杂合子”。

除了去除遗传物质,有些实验需要引入DNA序列到小鼠基因组中。这些插入的DNA片段,被称为”转基因”,而携带这些DNA片段的小鼠是”转基因的”。最常见的导入小鼠的”转基因”是一种驱动表达水母的绿色荧光蛋白或GFP基因。通过使用组织特异性启动子(一种”促进”基因活性的调节序列)驱动GFP的产生,我们可以很容易地通过绿色荧光确定特定组织类型的细胞。

由于许多遗传变化不会产生如GFP表达这种容易观察到的表型,我们需要将小鼠进行基因分型,以确定哪些特定的动物应该在实验中使用。进行基因分型前,小鼠应仔细标记,这样以后可以识别它们。不,您需要比这更永久的标记。一个常用的方法是在小鼠耳朵上做切口,使得切口的位置与数目对应于一个ID号。

一旦小鼠标记完毕,收集一小块组织(通常为用剃刀刃或剪刀剪下的2 – 5 mm的尾巴),从中提取DNA。如果你从多个小鼠中收集组织,标记好刀片的使用部分,以确保您不会在接下来的动物上使用相同的部分,因为这可能会导致样本的交叉污染。

首先要将遗传物质与来自组织的其它成分分离,将样品用含有蛋白酶K的裂解缓冲液消化。过夜消化后,离心样品以沉淀毛发和其它任何未消化的材料。要从消化裂解液中分离DNA,一个简单而有效的方法是添加乙醇以沉淀核酸。短暂孵育后,将样品再次离心,收集沉淀下来的DNA。

接下来我们用70%乙醇洗涤,以除去过量的盐,然后将DNA沉淀再重悬于水或缓冲液中,并准备进行基因分型。

确定一个特定的DNA序列是否存在于您的小鼠中有很多办法。多数方法都需要先使用聚合酶链式反应PCR,扩增感兴趣的遗传区域。如想了解关于如何准备PCR的更多信息,请观看JoVE的科学教程”PCR反应指南。”

一种用来区分基因型的方法是检测PCR扩增片段的大小变化。比方说,您要筛选插入了700个碱基对大小基因的小鼠。 PCR后,野生型带是200个碱基对,而转基因带应该是900个碱基对。

将您的PCR产物跑胶,让反应产物在适当比例的琼脂糖凝胶中分离,这样您就可以辨别您的片段大小。野生型对照应该只有一条200个碱基对的野生型带;转基因对照应该只有一条900碱基对的带;而杂合子对照应该同时含有这两条带。最后,应包括一个”无模板”的对照,以确保所用试剂不含有任何污染的DNA,因此,它不应该产生任何带。

现在,我们确定对照PCR得到结果和预期一样,让我们看看未知小鼠的PCR。因为小鼠1和2各自都只有一条野生型带,它们是纯合野生型。小鼠4和6每个都只有一个转基因带,因此是纯合的转基因型。

小鼠3和5各有两条带,并因此是杂合子。

最后,当您回去找您想要的基因型的小鼠时,您只需要将耳朵切口的标志与小鼠的ID号匹配就行了。

理解了什么是基因分型以及它的操作后,让我们来看看一些例子说明为什么它是非常有用的。

在某些情况下,需要更复杂的遗传修饰以产生所需的表型。例如,要建立皮肤癌的小鼠模型,需要两个转基因。一个携带可诱导的”致癌基因”,或可导致癌症的基因,另一个携带Cre重组酶的基因,它只在皮肤中表达并能切除一段抑制癌基因表达的序列,从而使癌基因得到表达。要得到同时含有这两个转基因的后代,需将含每个转基因的杂合子小鼠进行交配。然后用基因分型来鉴定后代。

有时可能无法在实验之前对小鼠进行基因分型。例如这个研究胚胎心脏速率的实验,无法做到从胚胎中收集组织而不破坏它们的行为。因此,首先要仔细标记胚胎在母体中的位置,然后记录下超声测量结果。最后,收集尾巴活检来确定基因型对心脏速率的影响。

本短片已经演示了DNA提取的一种方法,但还有很多其他的方法。在直接PCR方法中,先将组织消化不到五分钟,然后将未消化的材料离心沉淀后,将上清液直接用于PCR,这样就无需进行DNA纯化。

您刚观看的是JoVE的小鼠基因分型的简介。本短片中,我们回顾了小鼠遗传学的基本知识,如何准备和分析小鼠的DNA样本,以及这项技术的一些实际应用。感谢观看!

Transcript

Genotyping is the process of detecting the presence, or absence, of specific DNA sequences in a particular organism’s genome.

Since genes can influence a mouse’s phenotype, being able to probe an individual mouse’s genetic make-up, or “genotype,” is critical for attributing a phenotype to a specific gene. This video will explore mouse genetics, demonstrate key steps of the genotyping procedure, and explain how to interpret PCR-based genotyping results.

In order to understand what researchers look for when they genotype mice, let’s review some common manipulations to mouse genetics.

To study a gene, scientists frequently disrupt its function by altering its genetic sequence. However, mice are diploid, so they have two copies of any given gene. Since most genes need only one normal copy to function, the mice must be bred to produce an animal with both genes disrupted prior to studying phenotype.

This genotype is called a “homozygous knockout,” or more commonly just “knockout” for short. Conversely, a normal mouse with two functional copies is called a “homozygous wildtype,” or just “wildtype.” Finally, mice with just one functional copy are referred to as “heterozygous,” or “hets.”

Instead of removing genetic material, some experiments require the introduction of DNA sequences into the mouse genome. These inserted DNA fragments are called “transgenes,” and the mice that carry them are “transgenic.” The most common “transgene” introduced into mice is one that drives the expression of green fluorescent protein, or GFP, from jellyfish. By using a tissue-specific promoter (a regulatory sequence that “promotes” the activity of a gene) to drive GFP production, cells from a specific tissue type can be easily identified by green fluorescence.

Because many genetic changes do not lead to a readily observable phenotype, like GFP expression, mice need to be genotyped to determine which specific animal should be used in experiments. Prior to genotyping, mice should be carefully labeled so that they can be identified again later. No, you’ll need something more permanent than that. One common method is to make notches in the ear, such that the position and number of notches corresponds to an ID number.

Once the mouse is labeled, collect a small piece of tissue (typically 2 — 5 mm of tail, using a razorblade or scissors) from which to extract DNA. If you’re collecting tissue from more than one mouse, mark the used segments of the blade to ensure you won’t use the same part on the next animal, which could lead to cross-contamination in your samples.

To begin the process of separating the genetic material from other components of the tissue, the sample is digested in lysis buffer containing the enzyme proteinase K. After an overnight digestion, the sample is centrifuged to pellet hair and any other undigested material. To isolate DNA from the digested lysate, a simple and effective method is to add alcohol to precipitate nucleic acids. After a brief incubation, the sample is centrifuged again to collect the DNA in a pellet.

After washing with 70% ethanol to remove excess salts, the DNA pellet is resuspended in water or buffer and is ready for genotyping.

There are many strategies to determine whether a specific DNA sequence is present in your mice. Most of them require you to first amplify the genetic region of interest using the polymerase chain reaction, or PCR. For more information on how to set up PCR, please check out the JoVE Science Education “Guide to PCR.”

One method to distinguish genotypes is to detect changes in the size of the PCR-amplified fragment. Let’s say that you’re screening for mice with a genetic insertion of 700 base pairs. After PCR, wildtype bands are 200 base pairs, and transgene bands should be 900 base pairs.

After running your PCR, separate the reaction products on an appropriate percentage agarose gel, so you can distinguish the sizes of your fragments. The wildtype control should only have the 200 base pair wildtype band; the transgenic control should only have the one 900 base pair, transgene band; and the het control should have both bands. Finally, a “no template” control is included to be sure the reagents do not contain any contaminating DNA, and should therefore not generate any bands.

Now that we are confident that the controls worked as expected, let’s check out the unknown mice. Since mice 1 and 2 each have only one, wildtype band, they are homozygous wildtype. Mice 4 and 6 each have only one, transgene band, and are therefore homozygous transgenic.

And mice 3 and 5 each have two bands, and are therefore hets.

Finally, when you go back to find the mice with the genotype you want, you just need to match up the pattern of ear notches with the mouse’s ID number.

After gaining an understanding of what genotyping is and how it’s done, let’s look at some examples of why it’s useful.

In some cases, more complex genetic modifications are required to produce the desired phenotype. For example, to establish this model of skin cancer in mice, two transgenes are required. One carries an inducible “oncogene,” or a gene that can cause cancer, and the second carries the enzyme Cre recombinase, which is only expressed in skin cells and excises a sequence that prevents oncogene transcription, thereby allowing oncogene expression. To produce offspring with both transgenes, mice heterozygous for each are mated. Genotyping is then used to identify the desired offspring.

Sometimes it may not be possible to genotype mice before an experiment. For example, in this study of embryonic heart rate, it is not feasible to collect tissue for genotyping from the embryos without disrupting their behavior. Therefore, the embryo positions within the mother are first carefully labeled, then ultrasound measurements are recorded. Finally, tail biopsies are collected to determine the effect of the genotype on heart rate.

This video has demonstrated one method of DNA extraction, but there are many variations. For example, the Direct PCR system requires less than five minutes of tissue digestion. Additionally, after spinning down undigested material, the supernatant is ready for PCR, eliminating the need for DNA purification.

You’ve just watched JoVE’s guide to genotyping mice. In this video, we’ve reviewed the basics of mouse genetics, how to prepare and analyze mouse DNA samples, as well as some practical applications of this technique. Thanks for watching!