神经解剖学研究神经系统的结构以及它们是如何与功能相关联的。 神经解剖学的一个焦点是中枢和外周神经系统内的宏观结构,如大脑表面上的皮层的褶皱。然而,该领域的科学家对神经元和神经胶质细胞,这两个神经系统的主要细胞类型,之间的微观关系也感兴趣。
本短片简单介绍了解剖学研究的历史,它可追溯到公元前4世纪,当时的哲学家首先提出假说认为灵魂存在于大脑而非心脏。然后我们概述了神经解剖学家所问的核心问题,其中包括细胞结构,即神经元和神经胶质的分布在脑功能中所扮演的角色, 以及经验或疾病如何导致神经解剖学变化。然后,我们讲叙了一些可用来回答这些问题的技术,比如组织学和磁共振成像。最后,本短片提供了解剖学研究的几个应用,演示了该领域在今天的神经科学实验室中的现状。
通过神经解剖学的研究,科学家们试图绘制一个图谱用于正确定位控制我们行为的复杂神经系统。在微观层面上,神经解剖学家研究称为神经元的信号细胞,称为神经胶质细胞的支持细胞,和支持它们的细胞外基质结构之间的关系。从更广泛的层面,在器官水平上,神经解剖学检查大脑结构和神经通路。
本短片将概述神经解剖学研究,先介绍该领域的历史,神经解剖学家所问的关键问题,以及回答这些问题所用的研究工具,然后回顾一些研究神经解剖学的具体实验。
让我们先回顾一下这个神经科学分支的历史。神经解剖学研究的根源可以追溯到公元前4世纪,当时希波克拉底提出假说认为心理活动存在于大脑,而不是在心脏。
但直到15世纪末,教皇西克斯都四世批准了人体解剖,神经解剖学的研究才焕发生机,这反映在安德里亚斯·维萨里1543年出版的“身体的运作”一书中,其中包括了大脑解剖的详细说明。
1664年,托马斯·威利斯扩展此工作出版了“脑的解剖”一书。在这本书中他介绍了一些新的神经结构,并推测了它们的功能。现在,这项工作被认为是现代神经解剖学的基础。
到16世纪末,显微镜的发明推动了解剖学研究的第二次革命。随着这一技术突破,1873年,卡米洛·高尔基发明了一种染色技术在显微镜下观察单个神经元。
基于这些创新,在1888年,桑地亚哥·拉蒙·卡哈尔系统阐述了神经元学说:也就是大脑的解剖和功能单位是神经元这一观点。
回到宏观层面,1909年,科比尼安·布罗德曼发表了一系列的大脑图谱,他将大脑皮层分为52个不同的脑区,被称为“布罗德曼区”。这些图谱来源于他的观察,即各皮层区有不同的细胞结构。
之后,在1957年,怀尔德·潘菲尔德和西奥多·拉斯穆森绘制了皮质人体图:一个专门显示控制特定的运动和感觉功能的布罗德曼区的更详细的图谱。
基于过去这些对神经系统结构在微观和宏观层面上了不起的研究,今天的神经解剖学家想知道的问题是,结构是如何与功能相关联的。首先,有些研究人员特别关注细胞结构,或神经元和神经胶质细胞的排列。例如,为了研究特定的神经核,或大脑中的神经元集群,鉴定该处发现的神经元亚型以及这些细胞与其他脑区的连接将有助于该问题的研究。
由于细胞结构是动态的,该领域的另一个核心问题是神经结构变化是如何以及为什么发生的。
例如,学习和记忆与“神经可塑性”或神经通路的变化相关,比如神经元之间的接触点结构的改变。这些小突起,称为树突棘,可以依神经元的活动方式在大小,形状和数量上发生动态变化。
了解神经系统的结构对于解释其功能障碍也很关键的。
例如,令人衰弱的神经退行性疾病都与特定的神经解剖学变化相关,比如帕金森氏病中观察到的多巴胺能神经元的衰退。
在讨论了神经解剖学家感兴趣的核心问题后,让我们来看看这些科学家为了寻找答案使用的实验工具。
首先,组织学或对染色的组织切片的分析,是研究细胞结构的重要技术。
神经解剖学家有许多可以用于观察神经系统特定结构的染色方法。
组织化学是组织学的一个分支,它是对化学成分进行定位和识别。组织化学的一个特别有价值的应用是检测示踪剂:这些分子被引入到神经元中用以观察神经元在神经系统中的连接。
正如我们前面所提到的,显微镜的出现彻底改变了神经解剖学的研究方法。光学显微镜能使组织学染色的神经组织以高出原有大小一千倍进行成像,从而揭示细胞结构。荧光显微镜使得免疫标记的蛋白质在组织切片上或在组培上成像,并能进行共定位研究,这用于确定两个蛋白质是否很靠近存在于一个神经元中。
共聚焦成像是荧光显微镜的改进方法,它可以形成神经元组织的光学切片,并因此用来生成神经元的三维重建,以便研究它们的形态或形状。
双光子成像是另一种类型的荧光成像,它可以深入渗透到组织中,常用于对反应中动物的大脑的活体成像。
然而,没有任何光子可以象电子那样穿透,因此电子显微镜对于得到亚纳米分辨率的神经元结构是非常宝贵的。尤其使用透射电子显微镜能看到突触的精致细节。此外,可以通过编译电子显微镜连续切片获得的图像,用被称为断层扫描的过程对神经元“分层”进行三维重建。
神经影像学是监测随时间变化的神经解剖结构的一个非常有用的工具。磁共振成像或MRI,被广泛地用于研究人的大脑。这种技术提供了整个大脑的图片,可达到1mm的分辨率。MRI可以通过示踪研究白质。利用这种技术,神经解剖学家观察轴突束,揭示脑区之间及之内的连接。
为确定神经解剖学和疾病状态之间的相关因素,科学家们常常对动物模型进行外科技术操作。立体定向手术采用的是3维坐标系统和详细的解剖图谱,使研究人员能够对隔离的解剖区域进行操作。利用立体定位装置和正确的解剖信息,可以对大脑的目标区域导入电刺激,施加药物或其他物质,或者创建病灶。
接下来,让我们回顾这些方法的一些应用。关于大脑结构的详细信息可以通过分析被切成薄切片保存的大脑而获得。为了突出显示不同的结构特征,灵长类动物大脑的这些切片被染色,以显示三种蛋白在整个大脑中的表达。也可在高放大倍率下研究染色的切片,这使研究人员能够在细胞水平观察其结构。
经验可以在细胞水平上改变神经元的结构。在该实验中,将幼年大鼠在整个发育过程中暴露于触觉刺激。当它们长到成年,采集它们的大脑样本染色以观察细胞形态。所产生的图像显示树突形状和数目的变化,这意味着改变了神经元的连接。
神经解剖学在临床上很关键,因为它有助于诊断和治疗神经和精神疾病。例如,细胞结构的改变与特定的疾病状态紧密相连。结构性神经影像学技术经常结合功能成像来比较正常和疾病状态下特定大脑区域的活动。比如,患有脑震荡的患者呈现神经活动模式的变化,这与他们从伤病中恢复相关。
您刚观看的是JoVE对神经解剖学的介绍。本短片中,我们追溯了神经解剖学研究的历史,介绍了神经解剖学家所问的核心问题。我们也探讨了在微观和宏观层面上的研究策略,并讨论了它们的应用。
感谢观看!
Through the study of neuroanatomy, scientists attempt to draw a map to navigate the complex system that controls our behavior. On the microscopic level, neuroanatomists investigate the relationships between signaling cells, known as neurons; maintenance cells, known as glia; and the extracellular matrix structure that support them. From a broader view, at the organ level, neuroanatomy examines brain structures and nerve pathways.
This video will provide an overview of neuroanatomical research by introducing the history of the field, key questions asked by neuroanatomists, and the tools available to answer those questions, followed by a review of some specific experiments investigating neuroanatomy.
Let’s begin by reviewing the history of this branch of neuroscience. The roots of neuroanatomical research can be traced back to the 4th century BC, when Hippocrates hypothesized that mental activity resides in the brain, rather than the heart.
But it was not until the end of the 15th century, when Pope Sixtus IV destigmatized human dissection, that the study of neuroanatomy was revitalized, as reflected by the publication in 1543 of Andreas Vesalius’s “On the Workings of the Human Body,” which included a detailed account of brain anatomy.
Expanding on this work, in 1664, Thomas Willis published the “Anatomy of the Brain”, in which he introduced several novel neurological structures and speculated on their function. This work is now considered to be the foundation of modern neuroanatomy.
At the end of the 16th century, the invention of the microscope spurred a second revolution in neuroanatomical research. Following on this technological breakthrough, in 1873, Camillo Golgi invented a staining technique to visualize single neurons under the microscope.
Thanks to these innovations, in 1888, Santiago Ramón y Cajal formulated the Neuron Doctrine: the idea that the anatomical and functional unit of the brain is the neuron.
Back at the macroscopic level, in 1909, Korbinian Brodmann published a series of brain maps, where he divided the cerebral cortex into 52 distinct areas, termed “Brodmann’s areas.” These maps were based on his observation that various cortical areas have different cytoarchitecture.
Later, in 1957, Wilder Penfield and Theodore Rasmussen generated the cortical homunculus: A more detailed map of a select Brodmann areas showing the regions controlling specific motor and sensory functions.
Building upon these impressive historical studies of nervous system structure at the microscopic and macroscopic levels, today’s neuroanatomists ask questions concerning how structure relates to function. To begin, some researchers focus specifically on cytoarchitecture, or the arrangement of neurons and glia. For example, to investigate specific nuclei, or neuron clusters in the brain, it is helpful to characterize the neuronal subtypes found there and the connections those cells make with other brain regions.
Given that cytoarchitecture is dynamic, another key question in this field focuses on how and why neuroanatomical changes take place.
For example, learning and memory are associated with “neuroplasticity,” or changes in neural pathways, like alterations in the structural contact points between neurons. Small protrusions, called dendritic spines, can dynamically change in size, shape, and number in an activity-dependent manner.
Understanding the structure of the nervous system is also pivotal to explaining its dysfunction.
For instance, debilitating neurodegenerative diseases are associated with characteristic neuroanatomical changes, such as the degeneration of dopaminergic neurons observed in Parkinson’s disease.
Having discussed the key questions that neuroanatomists ask, let’s review the tools these scientists use to find answers.
First, histology, or the analysis of stained tissue slices, is an essential technique for studying cytoarchitecture.
Neuroanatomists have a number of stains at their disposal to visualize specific structures in the nervous system.
Histochemistry is a branch of histology based on the localization and identification of chemical components. One particularly valuable application of histochemistry is the detection of tracers: Molecules that are introduced into neurons to visualize their connections within the nervous system.
As we mentioned previously, the advent of the microscope revolutionized the way that neuroanatomy was studied. The light microscope enables histologically-stained neuronal tissue to be imaged at up to a thousand times its original size, thereby revealing cytoarchitecture. The fluorescence light microscope allows for immunolabeled proteins to be imaged in tissue sections, or in culture, and permits colocalization studies, which involve determining whether or not two proteins are in close proximity within a single neuron.
Confocal imaging is an improved method of fluorescence microscopy that permits the optical sectioning of neuronal tissue and can therefore be used to generate 3D reconstructions of neurons so their morphology, or shape, can be studied.
2-photon imaging is another type of fluorescence imaging, which can penetrate deeply into tissue and is often used for live imaging of the brain in behaving animals.
However, no photon can penetrate quite like an electron, so electron microscopy has been invaluable for providing subnanometer resolution of neuronal structures. In particular, the synapse has been visualized in exquisite detail using transmission electron microscopy. Furthermore, by compiling the images obtained from serial sections visualized with electron microscopy, 3D reconstructions of neuronal “volumes” can be generated via a process known as tomography.
To monitor changes in neuroanatomical structures over time, neuroimaging is an extremely useful tool. Magnetic resonance imaging, or MRI, is extensively used to investigate the brain in humans. This technique provides a picture of the brain as a whole, down to a 1 mm resolution. MRI can be used to investigate white matter through tractography. With this technique, neuroanatomists visualize bundles of axons, revealing connections between, and within, brain areas.
In order to assess the correlates between neuroanatomy and disease states, scientists frequently make use of surgical techniques applied to animal models. Stereotactic surgery uses a 3-dimensional coordinate system and detailed anatomical atlases to allow researchers to physically manipulate isolated anatomical areas. With a stereotactic apparatus and the appropriate anatomical information, it is possible to deliver electrical stimulation, introduce drugs or other substances, or create lesions in targeted regions of the brain.
Next, let’s review some applications of these methods. Detailed information about brain structure can be obtained through analysis of preserved brains that are thinly sliced into sections. To highlight distinct structural features, these sections of primate brain were stained to show the expression of three proteins throughout the entire brain. Stained sections can also be studied at high magnification, allowing researchers to visualize structure at the cellular level.
Experience can modify neuronal structure at the cellular level. In this experiment, young rats are exposed to tactile stimuli throughout development. When they reach adulthood, brain samples are collected and stained to visualize cell morphology. The resulting images reveal changes in the shape and number of dendrites, suggesting altered neuronal connectivity.
Neuroanatomy is pivotal in clinical settings, as it contributes to diagnosis and treatment of neurological and psychiatric diseases. For instance, changes in cytoarchitecture are tightly linked to certain disease states. Structural neuroimaging techniques are frequently combined with functional imaging to compare the activity of specific brain regions in normal and disease states. For instance, patients suffering from concussion exhibit changes in neural activity patterns, which correlate with their recovery from the injury.
You’ve just watched JoVE’s introduction to neuroanatomy. In this video, we retraced the history of neuroanatomy research, and introduced the key questions neuroanatomists ask. We have also explored research strategies at the microscopic and macroscopic levels, and discussed their applications.
Thanks for watching!
Neuroscience
89.3K 浏览
Neuroscience
92.2K 浏览
Neuroscience
92.5K 浏览
Neuroscience
60.1K 浏览
Neuroscience
143.8K 浏览
Neuroscience
152.7K 浏览
Neuroscience
44.3K 浏览
Neuroscience
50.8K 浏览
Neuroscience
55.1K 浏览
Neuroscience
68.1K 浏览
Neuroscience
66.5K 浏览
Neuroscience
15.5K 浏览
Neuroscience
22.4K 浏览
Neuroscience
20.0K 浏览
Neuroscience
37.5K 浏览