基因沉默与 Morpholinos

Gene Silencing with Morpholinos
JoVE Science Education
Developmental Biology
This content is Free Access.
JoVE Science Education Developmental Biology
Gene Silencing with Morpholinos

33,430 Views

08:47 min
April 30, 2023

Overview

吗啉介导的基因沉默是一种常用的技术,用来在开发过程中研究特定基因的作用。Morpholinos 通过杂交互补基因抑制基因的表达。由于其独特的化学,morpholinos 很容易就可以生产和储存,这使得它们非常经济实惠相比其他的基因沉默方式。

这个视频评论适当实验设计时使用这些寡核苷酸。之后,将一并讨论了解释吗啉显微注射技术在斑马鱼和由此产生的表型分析。最后,我们展示吗啉技术用模型发育障碍或学习组织再生的具体应用的实例。

Procedure

基因沉默技术常用应用领域的发育生物学。吗啉基于击倒方法通常允许研究人员识别和表征基因参与重要的细胞过程。反义 morpholinos 现在是广泛存在于许多的模型系统,包括小鼠、 小鸡和斑马鱼,由于其高疗效、 高特异性、 和低成本的。

这个视频将提供吗啉机制和显微注射策略、 关键实验控件和如何 morpholinos 正被用于在实验室今天调查脊椎动物发展的概述。

Morpholinos 最初作为一种方式来抑制和生物活细胞内的 RNA 转录子的翻译。Morpholinos 通常由中立带电的骨干连接 25 寡核苷酸组成的合成分子。

但尽管 morpholinos 可能看起来有点象 DNA,它们包含吗啉环代替糖组在磷酸糖链中找到。这个简单的转换提高吗啉基稳定的细胞,并降低了他们的生产成本。

入细胞内部,morpholinos 被针对感兴趣的 RNA 由互补碱基配对。在 RNA 上的位置在哪里吗啉电价确定其具体的作用机制。

拼接阻塞 morpholinos 将绑定到特定的路口和抑制适当记录处理,而翻译阻塞 morpholinos 绑定内平移开始现场附近基因 5′ 非翻译区和防止核糖体装配。两种类型的 morpholinos 减少功能目标蛋白的表达。

在规划时使用 morpholinos 实验,有几个重要的考虑因素,要牢记心中。Morpholinos 可以用于几种模型系统,所以它是重要的是选择一个能够解决眼下的生物学问题的模型。

Morpholinos 商业为原料合成,和专业的设计援助是可用无代价地研究人员,但因为他们是序列特异性,基因信息的所有具体吗啉目标应该是货源的事先设计。

在斑马鱼模型系统中,经常有其他脊椎动物,由于发生在斑马鱼进化祖先的全基因组重复事件中发现的单个基因的两个副本。因此,击倒两个斑马鱼基因可能有必要对人类发展的成功模型蛋白缺陷。

设计良好的实验控制是设计你有针对性的 morpholinos 一样重要。任何给定的吗啉可以绑定到特定的序列在不同的基因。它是基因的最好使用独立的、 非重叠 morpholinos 补充到相同的基因,以确保观测的表型变化是基因的由于击倒你感兴趣。

现在,我们已经解决吗啉实验设计,让我们看看如何 morpholinos 引入斑马鱼。

在这里,我们将描述斑马鱼吗啉注射。对于更多的洞察力和指令上注射的详细信息,请参考朱庇特科学教育视频题为”斑马鱼显微注射技术。

Morpholinos 通常注入斑马鱼胚胎之间一和四细胞阶段,直到蛋黄或细胞细胞质。胚胎细胞的细胞质关系允许快速扩散和无处不在交付的水溶性 morpholinos 整个有机体。Morpholinos 是稳定在细胞中,由于利用斑马鱼胚胎提出在 28.5 ° c。

最佳注射浓度和卷,必须为每个吗啉实证检验。通常情况下,在其中还有一个表定义的可靠型至少 50-75%的注射胚胎的最低剂量用于为了避免胚胎致死或意外关闭目标的影响。

在第一次的三天后受精,确定了大多数吗啉斑马鱼表型和基因沉默是一般有效通过第五天。对于拼接阻塞 morpholinos RT-pcr 技术可以用于识别本机和蚀变的成绩单的相对数量。为翻译阻塞 morpholinos 水平的基因击倒被侵权人的印迹。

斑马鱼胚胎的透明度与快速外部发展允许容易观测的许多早期的生物学过程。通过分析形态明视场或荧光显微镜,以及通过评估行为,通常可以得分吗啉表型。

在定义吗啉基型之后,可以执行 RNA 救援演示目标特异性。之后的内源性 mRNA 的吗啉击倒,合成 mRNA 被注入,其中编码同样多的蛋白质,但不包含吗啉靶序列。如果此注入的 RNA 是能够恢复野生型表型的机体,,就可以得出结论,观察到吗啉表型特别是由于靶基因得到撞倒。

现在,你有一种感觉,可以执行 morpholinos 是什么和如何控制吗啉实验,让我们看看 morpholinos 如何被应用在生物实验室今天。

在细胞生物学中 morpholinos 用于了解早期发育过程。纤毛产生流体流动在枯氏囊泡是一个例子,控制左-右图案在斑马鱼。流体流动运行控制注射胚胎,逆时针旋转,而沉默基因的调控纤毛细胞组织扰乱流体速度和方向。

Morpholinos 也是非常适合快速、 可靠地模拟人类遗传疾病。损失函数表型可以由操纵蛋白表达,很容易复制人类发育不全肾囊肿、 心包水肿和尾巴卷曲显示斑马鱼模型所示。此外,致病性突变可以被快速测定体内使用野生型或突变体 mRNA 拯救吗啉疾病表型。

因为 morpholinos 可以以不同的方式引入活细胞,他们是高度重视研究器官再生与发展。显微注射 morpholinos 电刺激跟着进特定的组织,使研究人员研究鳍增长和视网膜形成在成年斑马鱼。

你刚看了基因沉默与 morpholinos 朱庇特的简介。在这个视频中,我们讨论了结构和机制 morpholinos,共同申请使用和评估疗效的重要途径和作用的靶向性的基因沉默。因为它们很容易设计,高度特异性,和性价比高,morpholinos 将保持帮助功能分析疾病和发展有关的基因的反向遗传学领域的重要参与者。谢谢观赏 !

Transcript

Gene silencing techniques are commonly used in the field of developmental biology. Morpholino-based knockdown approaches routinely allow researchers to both identify and characterize genes involved in important cellular processes. Antisense morpholinos are now widely popular in many model systems, including mice, chicks, and zebrafish, due to their high efficacy, high specificity, and low cost.

This video will provide an overview of morpholino mechanisms and microinjection strategies, key experimental controls, and how morpholinos are being used in labs today to investigate vertebrate development.

Morpholinos were first developed as a way to inhibit the translation of RNA transcripts in living cells and organisms. Generally, morpholinos are synthetic molecules made up of 25 oligonucleotides connected by a neutrally charged backbone.

But although morpholinos may look a lot like DNA, they contain morpholine rings in place of the sugar groups found in phosphate sugar backbone. This simple conversion increases morpholino stability in cells, and lowers their cost of production.

Inside cells, morpholinos are targeted to the RNA of interest by complementary base pairing. The location on the RNA where the morpholino hybridizes determines its specific mechanism of action.

Splice-blocking morpholinos bind to specific junctions and inhibit proper transcript processing, whereas translation-blocking morpholinos bind within the 5′ untranslated region of the gene near the translational start site and prevent ribosome assembly. Both types of morpholinos reduce expression of functional target proteins.

When planning an experiment using morpholinos, there are a few important considerations to keep in mind. Morpholinos can be used in several model systems, so it is important to select a model that is able to address the biological question at hand.

Morpholinos are commercially synthesized, and professional design assistance is available at no cost to researchers, but because they are sequence-specific, gene information for all specific morpholino targets should be sourced prior to design.

In the zebrafish model system, there are often two copies of single genes found in other vertebrates, due to a whole-genome duplication event that occurred in an evolutionary ancestor of the zebrafish. Therefore, knockdown of both zebrafish genes may be necessary to successfully model protein deficiencies in human development.

Designing good experimental controls is just as important as designing your targeted morpholinos. Any given morpholino can bind to specific sequences on different genes. It is advisable to use independent, non-overlapping morpholinos complementary to the same gene, in order to ensure that an observed phenotypic change is due to knockdown of your gene of interest.

Now that we’ve addressed morpholino experimental design, let’s have a look at how morpholinos are introduced into zebrafish.

Here, we will describe morpholino microinjection into zebrafish. For more insight and instruction on the details of microinjection, please reference the JoVE Science Education video entitled “Zebrafish Microinjection Techniques.”

Morpholinos are typically injected into zebrafish embryos between the one- and four-cell stage, into the yolk or cell cytoplasm. Cytoplasmic connections between embryonic cells allow for rapid diffusion and ubiquitous delivery of water-soluble morpholinos throughout the organism. Morpholinos are stable in cells, since the zebrafish embryo is raised at 28.5°C.

Optimum injection concentrations and volumes must be empirically tested for each morpholino. Typically, the lowest dose at which there is a defined reliable phenotype in at least 50-75% of injected embryos is used in order to avoid embryonic lethality or unwanted off-target effects.

Most morpholino zebrafish phenotypes are identified in the first three days post-fertilization, and gene silencing is generally effective through day five. In the case of splice-blocking morpholinos, RT-PCR can be used to identify relative amounts of native and altered transcripts. For translation-blocking morpholinos, levels of gene knockdown may be assessed by Western blot.

The rapid external development and transparency of zebrafish embryos allows for easy observation of many early biological processes. Morpholino phenotypes can commonly be scored by analyzing morphology using brightfield or fluorescence microscopy, as well as by assessing behavior.

After the morpholino phenotype has been defined, RNA rescue can be performed to demonstrate target specificity. Following morpholino knockdown of the endogenous mRNA, synthetic mRNA is injected, which encodes the same protein, but does not contain the morpholino target sequence. If this injected RNA is able to restore the wild-type phenotype of the organism, then we can conclude that the observed morpholino phenotype is specifically due to the target gene getting knocked down.

Now that you have a feel for what morpholinos are and how controlled morpholino experiments can be performed, let’s look at how morpholinos are being applied in biological labs today.

In cell biology, morpholinos are used to understand early developmental processes. Cilia-generated fluid flow in Kupffer’s vesicle is one example, which controls left-right patterning in zebrafish. Fluid flow runs counterclockwise in control-injected embryos, whereas silencing of a gene that regulates ciliated cell organization disrupts fluid speed and direction.

Morpholinos are also very suited to quickly and reliably model human genetic diseases. Loss-of-function phenotypes can be easily reproduced by manipulating protein expression, as seen in a zebrafish model of human dysplasia displaying kidney cysts, pericardial edema, and a curled tail. Additionally, pathogenic mutations can be rapidly assayed in vivo by using wild-type or mutant mRNA to rescue morpholino disease phenotypes.

Since morpholinos can be introduced into living cells in different ways, they are highly valued in studying organ regeneration and development. Microinjection followed by electrical stimulation of morpholinos into specific tissues has allowed researchers to study fin growth and retina formation in adult zebrafish.

You’ve just watched JoVE’s introduction to gene silencing with morpholinos. In this video, we’ve discussed the structure and mechanism of morpholinos, common applications for use, and important ways to assess efficacy and effects of targeted gene silencing. Because they are easy to design, highly specific, and cost-effective, morpholinos will remain a significant player in the field of reverse genetics, helping to functionally analyze genes involved in disease and development. Thanks for watching!

Tags