资料来源: 实验室博士丽迪雅芬尼 — — 阿贡国家实验室
X 射线荧光是诱导、 发出的辐射,可以用来产生光谱信息。X 射线荧光显微术是一种非破坏性的成像技术,使用金属诱导的荧光发射来识别和量化及其空间分布。
第一,必须制备样品,薄,平坦,和干燥 (除非可用在显微镜下观察是一个特殊的低温阶段)。接下来,单色 x 射线光束是光栅扫描样品上。X 射线束克服了一些与金属原子的内层电子结合能,当外壳电子落入那些职位空缺,第二次 x 射线发射的样品。在此光栅扫描的每一点,x 射线荧光光谱被收集的探测器。
这在光谱中,记录的波长和强度的所有发出的样品的 x 射线。基于特征的能量 (因为在原子轨道的间距) 发出的荧光和 Kα和 Kβ峰 (例如,这两个众所周知的) 特征的相对强度,发射谱可以用于确定目前金属的身份和数量。
这个视频会解释薄,干燥制样贴壁细胞适合荧光成像的过程。将简要,说明扫描样本的过程和示例图像描述。
1.制备硅氮化 Windows
2.镀上消毒的硅氮化 Windows 细胞
3.固定和干燥的细胞
4.x 射线荧光成像技术的细胞
X 射线荧光或 XRF,光谱技术是用于执行元素分析的样品在室温下的非破坏性分析技术。
Xrf 法可以应用于范围广泛的样品,其中包括法医、 环境、 生物、 甚至艺术作品。样品也可以采取各种形式,如粉、 晶体和液体。在 XRF,样品充斥着一束 x 射线造成它辐射出二次 x 射线在较低的能量,被称为荧光辐射。
虽然它指一种荧光技术,XRF 不同于传统的荧光显微镜,它不使用低能量的可见光或光活性分子。
这个视频将介绍基本的 XRF,并演示如何收集元素映射的生物样品。
当足够能量的光子与原子碰撞时,能量被吸收,令人兴奋的外壳电子之一。电子现金股利,它会发出一个次要的光子,通常更低的能量。这一过程被称为荧光。与较低能量的光子,像那些在荧光显微镜观察,不同的是 x 射线光子是足够的精力完全驱逐紧紧地举行的电子从内层。电子从一个更高的能量外壳然后将陷入这一空缺。两个壳之间的能量差成正比的光子被释放。每个元素发出一套独特的光子或频谱,可以用于标识的元素,并确定目前的数量。这种现象被称为 x 射线荧光。
一旦收集了元素的光谱,感兴趣的元素信号可被隔离。在示例中,生成的图像,一次一个像素,可以在多个地点采取措施。这一过程被称为光栅扫描。可以随后生成图像所有感兴趣的元素。这些元素地图提供有价值的样品信息。Xrf 法的理解,你现在准备生物细胞样本,以生成元素的映射。
若要开始,第一次准备和消毒硅氮化窗口,将样品在扫描的地方。使用护理,因为它们是非常脆弱。东方的窗口,它是平的面了。然后将窗口放在培养皿中,坚持菜用小块的胶带。
最后,消毒硅氮化窗口与紫外辐射的 1 小时。
既然已经灭菌的窗口,可以给它固定样本。首先,角拿住培养皿,并将媒体添加到边上的菜。慢慢地减轻倾斜,大衣的窗口。以同样的方式,在菜里加细胞和孵化。
定期观察光镜下的细胞,直到他们准备使用。
在层流罩,轻轻地吸出媒体从这道菜。
然后,冲洗细胞与磷酸盐缓冲液来删除多余的媒体。
抽吸 PBS,和多聚甲醛固定的细胞。20 分钟后,取出混合物并作为危险废物处置。
从这道菜,移除窗口快速涂抹边缘和回与 Kimwipe 窗口的缩进。将窗口设置在干净的表面干燥。
一旦该示例是干燥的光学显微镜下观察验证出现在窗户上的细胞。
使用干净的指甲油,安全窗口对铝持有人。
样品架插入仪器装载,然后装入放在 x 射线显微镜的定位阶段。
在焦点 x 射线显微镜光学与入射光束成 45 度角的示例窗口的位置。
退出仪器区域并进行远程尽量减少 x 射线照射的其余步骤。
打开快门,并使用光学聚焦单色的 x 射线束到亚微米光斑尺寸。
点的位置可以用预校准相机成像。使用定位阶段,确定适当的宽度和高度需要到栅格的样本。
收集试验谱的利益具有 1-2 秒驻留时间的元素。
从实测光谱图,选择相应的扫描时间为感兴趣的元素提供足够的信号噪声比。
然后,确定所需的样本分辨率。该决议应小于的功能感兴趣,但大于光斑尺寸。最后,到扫描软件,程序扫描和采集图像。
在这个实验中,一个单元格元素地图进行了几个不同的元素。许多金属,如铜、 铁和锌都是重要的营养物质,在该单元格,并明确规定了在细胞内。
通过确定在哪里每种金属发现在单元格中,可以对其正常的细胞过程阐述了有价值的信息。此外,基于金属的疾病是可以理解的。
X 射线荧光法用于广泛的科学领域。XRF 的非破坏性使其使用研究的历史文物。艺术历史学家利用技术来确定最初用在艺术作品中的颜料。这可以澄清有关的工作,如出处,早已随着时间的流逝真实性的颜色信息。法医科学家也在犯罪现场调查中使用 x 射线荧光。当枪开火时,周边地区被涂有枪残留。枪射击的渣含有火药、 点火引物和金属套管和子弹。Xrf 法收集的信息,可以确定罪魁祸首和使用武器。
适合于 x 射线荧光光谱的另一个领域是研究的古生物学。在这里,从三叶虫化石,生活在 2 亿 5000 万多年前海洋节肢动物收集元素的信息。
通过描述化石的元素组成,可以获得关于早已灭绝生命的新情报。相对而言样品甚至可以提供很久以前已经恶化的软组织组成。
你刚看了 x 射线荧光光谱的朱庇特的简介。现在,您应该了解的 x 射线谱理论和如何从各种来源收集元素的信息。
谢谢观赏 !
X 射线荧光地图的贴壁的细胞如图 1所示。每个面板显示在单元格上的特定元素 (例如,铜、 铁、 锌等) 分布。小组标记 ‘s_a’ 显示 x 射线的吸收。
图 1。X 射线荧光地图的贴壁细胞。请点击这里查看此图的大版本。
X 射线荧光成像可以是一个有用的工具,在许多领域,包括地球科学、 法医科学、 材料科学、 生物,和甚至在学习我们的文化遗产。在材料科学,它可以帮助发现芯片和催化剂用金属中存在缺陷。在文化遗产的工作,它已被查明著名死去的人 (例如,贝多芬),头发中的有毒金属,油漆涂料,艺术的源头。在生物学上,它用于研究执行重要生化天然金属。在地学,它经常用于研究岩石记录中记载的事件。使 x 射线荧光成像中有用,所以很多领域都是 1 的两个特定特征) 其非破坏性,这么多项目,是罕见的或高价值可以成像,和 2) 所述的样品制备在这里为细胞虽复杂 — — 因为这些单元格必须干的很多材料,如岩石、 艺术或其他物品,是很少的样品制备所需除了应平整、 无灰尘。虽然同步辐射加速器是需要哪一个是最好通过在这些设施的科学家合作,技术可以非常方便。
X-ray fluorescence, or XRF, spectroscopy is a non-destructive analytical technique that is used to perform elemental analysis of samples at room temperature.
XRF can be applied to a wide range of samples, including biological, forensic, environmental, and even works of art. The samples can also take a variety of forms, such as powders, crystals, and liquids. In XRF, a sample is bombarded with a beam of X-rays causing it to emit secondary X-rays at a lower energy, which are called fluorescent radiation.
Though it is referred to as a fluorescence technique, XRF differs from traditional fluorescence microscopy in that it does not use lower energy visible light, or light-active molecules.
This video will introduce the basics of XRF, and demonstrate how to collect elemental maps of a biological sample.
When a photon of sufficient energy collides with an atom, the energy is absorbed, exciting one of the outer shell electrons. As the electron relaxes, it emits a secondary photon, typically of lower energy. This process is known as fluorescence. Unlike lower-energy photons, like those used in fluorescence microscopy, X-ray photons are energetic enough to completely expel tightly held electrons from an inner shell. An electron from a higher-energy shell will then fall into the vacancy. A photon proportional to the energy difference between the two shells is released. Each element emits a unique set of photons, or spectrum, that can be used to identify the element and determine the quantity present. This phenomenon is known as X-ray fluorescence.
Once an elemental spectrum has been collected, the signals of elements of interest can be isolated. Measurements can be taken at multiple locations across a sample, generating an image, one pixel at a time. This process is known as raster scanning. Images of all elements of interest can be subsequently generated. These elemental maps provide valuable information about the sample. With an understanding of XRF, you are now ready to prepare a biological cell sample to generate elemental maps.
To begin, first prepare and sterilize a silicon nitride window, which will hold the sample in place for the scan. Use care, as they are very fragile. Orient the window so that it is flat side up. Then place the window in a culture dish, and adhere it to the dish using small pieces of adhesive tape.
Finally, sterilize the silicon nitride window with UV radiation for 1 hr.
Now that the window has been sterilized, the sample can be fixed to it. First, hold the culture dish at an angle and add media to the side of the dish. Slowly relieve the tilt to coat the window. Add cells to the dish in the same manner, and incubate.
Periodically observe the cells under a light microscope until they are ready to use.
In a laminar flow hood, gently aspirate the media from the dish.
Then, rinse the cells with phosphate buffered saline to remove excess media.
Aspirate the PBS, and fix the cells with paraformaldehyde. After 20 min, remove the mixture and dispose as hazardous waste.
Remove the window from the dish, and quickly blot the edges and back indentation of the window with a Kimwipe. Set the window on a clean surface to dry.
Once the sample is dry, verify the presence of cells on the window with a light microscope.
Using clear nail polish, secure the window to an aluminum holder.
Insert the sample holder into the instrument mount, then place the mount on the X-ray microscopes’ positioning stage.
Position the sample window at the focal point of the X-ray microscope optics, with a 45-degree angle to the incident beam.
Exit the instrument area and conduct the remaining steps remotely to minimize X-ray exposure.
Open the shutter, and use optics to focus the monochromatic X-ray beam down to a sub-micrometer spot size.
The position of the spot can be imaged with a pre-calibrated camera. Using the positioning stages, determine the appropriate width and height needed to raster over the sample.
Collect a test spectrum of the element of interest with a dwell time of 1 – 2 seconds.
From the test spectrum, choose an appropriate scan time in order to provide a sufficient signal-to-noise ratio for the elements of interest.
Then, determine the resolution needed for the sample. The resolution should be smaller than the features of interest, but larger than the spot size. Finally, program the scan into the scanning software, and collect the image.
In this experiment, an elemental map of a cell was performed for several different elements. Many metals, such as copper, iron, and zinc are important nutrients in the cell, and were clearly identified within the cell.
By determining where each metal is found in the cell, valuable information can be elucidated about its normal cellular processes. In addition, metal-based diseases can be understood.
X-ray fluorescence is used in a wide range of scientific fields. The non-destructive nature of XRF enables its use in the study of historical artifacts. Art historians utilize the technique to determine the pigments originally used in works of art. This can elucidate information about the work, such as the provenance, colors that have faded over time, and the authenticity. Forensic scientists also use XRF in crime scene investigation. When a gun is fired, the surrounding area is coated with gun shot residue. Gun shot residue contains gun powder, ignition primer, and metal from the casing and bullet. The information collected with XRF can identify the culprit and weapon used.
Another field of study that lends itself to X-ray fluorescence is paleontology. Here, elemental information is collected from a trilobite fossil, a marine arthropod that lived over 250 million years ago.
By characterizing the elemental composition of fossils, new information can be gained about long extinct life. Better-preserved samples can even provide the composition of soft tissues that have deteriorated long ago.
You’ve just watched JoVE’s introduction to X-ray fluorescence. You should now understand the theory of X-ray spectroscopy and how to collect elemental information from a wide range of sources.
Thanks for watching!
Related Videos
Analytical Chemistry
85.4K 浏览
Analytical Chemistry
205.6K 浏览
Analytical Chemistry
321.0K 浏览
Analytical Chemistry
799.1K 浏览
Analytical Chemistry
625.7K 浏览
Analytical Chemistry
51.5K 浏览
Analytical Chemistry
25.9K 浏览
Analytical Chemistry
283.2K 浏览
Analytical Chemistry
386.4K 浏览
Analytical Chemistry
265.2K 浏览
Analytical Chemistry
94.7K 浏览
Analytical Chemistry
112.9K 浏览
Analytical Chemistry
87.7K 浏览
Analytical Chemistry
51.8K 浏览
Analytical Chemistry
126.1K 浏览