FM 染料是一类荧光分子研究囊泡循环过程中发现有重要用途。凭借一种化学结构,这些分子可以插入自己的磷脂双层膜外的传单。膜在插入之后,他们是内在化通过 endocytosed 囊泡的单元格中,当这些囊泡膜回收返回时释放。 以来,这些染料的强烈荧光素膜的疏水性环境和弱在胞外车厢,FM 荧光水平可用于跟踪在整个回收过程的水疱性活动。
这个视频提供使用的调频染料实验旨在探讨囊泡循环中介绍。我们第一次审查 FM 染料和它们的属性如何在这些实验中允许他们使用的生化。我们会进入一个一般的协议来使用调频染料在这样的研究,并通过最后,讨论了最近的一些研究利用这些独特的分子。
FM 染料是广泛应用于图像囊泡循环的膜染料。这是其中一个单元格形成囊泡从了自己的膜来保护单元格的大小,再用昂贵的蛋白质,和连续运输到细胞外空间的分子的过程。最常用的工艺神经元突触,在那里它参与神经递质的释放。除了检查囊泡循环再造,FM 染料用于研究几个其他现象,例如嗜铬细胞分泌细胞膜损伤后的修复。
这个视频将侧重调频中的染料实验研究囊泡循环使用。我们会去一步一步的协议,使用调频染料来量化刺激神经元的再生过程。最后,我们会检讨一些示例实验,以不同的方式利用这种独特的分子。
跳转到该过程之前, 我们首先回顾一下 FM 染料,将有助于我们理解在囊泡循环实验中的作用的生化性质。
从结构上,FM 染料是苯乙烯基分子,他们的名字源自合成他们的科学家 — — 飞毛。这些染料有三个主要结构特点: 头、 尾部和桥梁。这座桥由两个芳环与它们之间的可变双键区域组成。这整个一节创建的荧光。
它是任何荧光时被传入击中在某些激发波长的光,它的原子吸收的能量和提高其电子激发态的性质。这些电子回到基态发射能量的振动,和最后作为发射波长的光。疏水尾脂双层的细胞膜,进入允许 FM 分子到分区,但其亲水性的头有限制其本地化再到外膜单张的电荷。
因此,它可以进入细胞的唯一途径是通过细胞内吞作用。FM 染料敏锐地环境敏感,并在极性溶剂,但像膜的疏水环境中强荧光显示弱荧光。这将创建高对比度膜标签,可以可视化和量化使用荧光显微镜。
这些特性使得 FM 染料特别适合评估回收在突触囊泡。简单地说,这个过程包括孵化与 FM 染料文化。有些 FM 分子得到附着的膜,其荧光强度会大大增加。下一步,刺激启动的膜内化过程。因此,一些调频分子都被困在囊泡膜,和其余的外部本地化的染料分子被冲走了。
关于第二个刺激内, 化染色的囊泡融合与细胞膜释放他们的内容,和染料快速 departitions,导致荧光强度迅速下降。这脱色可以量化的荧光显微镜的帮助。
现在,你已经熟悉的 FM 染料生物化学的原则,让我们审查程序如何执行实验,检验了突触囊泡循环使用这些染料。
事先准备好清洁、 健康样品的神经元文化上盖玻片。这些细胞被移到 FM 染料溶液,造成膜被贴标签。样品盖玻片然后装载到显微镜成像商会。
允许像洗、 流体的流体操作输入和输出线相连,形成一个密封的灌注室。装载荧光显微镜舞台室。分庭附加电线和将它们连接到电刺激仪。一旦连接,根据所使用的调频染料设置的激发和发射性能的筛选器。
加载到囊泡通过内吞作用的染料被致使用电的刺激。刺激后, 神经末梢被允许恢复。然后,胞外染料洗掉与缓冲区;这也将大大减少背景荧光。它是重要的是保持激励强度最低,因为 FM 染料易患漂白,由于长期激励的荧光强度减弱。后短潜伏期,获得初始图像。接下来,胞吐作用被诱导与第二的电气信号。
测量荧光刺激,在结束了后的不同时间点后可以详尽地刺激神经末梢,卸载所有可发布的染料。在那之后剩余的荧光被考虑作为背景荧光强度。然后,每个图像的固有荧光测量使用中非突触的图像区域的”感兴趣区域”工具。背景荧光和固有荧光然后减去每一个时间点上得到归一化的荧光强度,然后绘制时间的荧光强度。随着时间的推移在强度减少代表脱色,是间接测量的囊泡循环再造。
现在,我们已经审查的方法,让我们看看如何在具体实验中使用调频染料。
我们讨论了使用调频染料在刺激神经元的协议。在这里,科学家们对研究囊泡自发回收感兴趣。他们这样做在成像系统具有足够的灵敏度,以检测中荧光强度的小更改结合使用既定的协议。结果代表是直接由于自发的突触释放的荧光强度下降。
突触前神经元内囊泡被划分成两个池: 储备库或 RP,和一个轻易透露的池或建议零售价。在这里,科学家们使用调频染料分析囊泡人口中每种类型的分数。序贯应用的增加强度的电刺激,这些科学家们能够量化的每种类型的小泡池的相对百分比。
最后,细胞生物学家还使用调频染料解剖因素参与伤员细胞膜的胞吐修复。在这个实验中,研究人员的特别重点神经磷脂,脂质修饰的酶,膜加盖过程中的作用。首先,他们生成细胞缺乏酶神经磷脂的沉默 RNA 治疗帮助。接下来,他们对待这些细胞和对照组与外源 FM 染料和一种毒素,创建等离子膜病变。最后,他们认为,利用共聚焦显微镜的所有样品。结果表明神经磷脂缺乏细胞的胞内 FM 分子的鲁棒性积累。另一方面,控制细胞表现出最小的 FM 涌入,表明神经磷脂质膜修复作用。
你刚看了朱庇特的视频对 FM 染料在囊泡循环再造。视频描述的 FM 染料生化、 详细的议定书,染色,并量化突触囊泡循环,和最后概述了当前的实验,以不同的方式利用这些染料。一如既往,感谢您收看 !
FM dyes are membrane dyes that are widely used to image vesicle recycling. This is the process by which a cell forms vesicles from its own membrane to preserve cell size, reuse expensive proteins, and consecutively transport molecules to the extracellular space. This process is most commonly studied at neuronal synapses, where it’s involved in release of neurotransmitters. In addition to examining vesicle recycling, FM dyes are used to study several other phenomena, such as secretion in chromaffin cells and cell membrane repair following injury.
This video will focus on the use of FM dyes in an experiment studying vesicle recycling. We’ll go over a step-by-step protocol that uses FM dyes to quantify the recycling process in stimulated neurons. Lastly, we will review some example experiments, which utilize this unique molecule in different ways.
Before jumping into the procedure, let’s first review the biochemical properties of FM dyes, which will help us understand their function in vesicle recycling experiments.
Structurally, FM dyes are styryl molecules that derive their name from the scientist who synthesized them—Fei Mao. These dyes have three main structural features: head, tail, and bridge. The bridge consists of two aromatic rings with a variable double bond region between them. This entire section creates the fluorophore.
It is the nature of any fluorophore that when struck by incoming light at a certain excitation wavelength, its atoms absorb that energy and raise its electrons to an excited state. These electrons return to the ground state by emitting energy vibrationally, and finally as light of an emission wavelength. The hydrophobic tail allows the FM molecule to partition into the lipid bilayers of the cell membrane, and its hydrophilic head has a charge that restricts its localization to the outer membrane leaflet.
Therefore, the only way it can go into the cell is via endocytosis. FM dyes are acutely environment sensitive, and show weak fluorescence in polar solvents, but strong fluorescence in hydrophobic environments like membranes. This creates high contrast membrane labeling that can be visualized and quantified using a fluorescence microscope.
These properties make FM dyes specifically suited to assess vesicle recycling at synapses. Briefly, the process involves incubating the cultures with FM dye. Some of the FM molecules get attached to the membranes, which significantly increases their fluorescence intensities. Next, a stimulus initiates the membrane internalization process. Therefore, some FM molecules are trapped in the vesicle membrane, and the rest of the outer localized dye molecules are washed away.
On second stimulation, internalized stained vesicles fuse with the cell membrane to release their contents, and the dye quickly departitions, resulting in a rapid decrease in fluorescence intensity. This destaining can be quantified with the help of a fluorescence microscope.
Now that you’re familiar with the biochemical principles of FM dyes, let’s review a procedure on how to perform an experiment examining synaptic vesicle recycling using these dyes.
Clean, healthy samples of neuronal cultures on coverslips are prepared in advance. These cells are moved to a FM dye solution, causing the membranes to be labeled. The sample coverslip is then mounted onto the imaging chamber of the microscope.
To allow fluid manipulations like washes, fluid input and output lines are attached to form a sealed perfusion chamber. Mount the chamber onto the stage of a fluorescence microscope. Attach wires to the chamber and connect them to the electrical stimulator. Once attached, the excitation and emission filters are set according to the FM dye used.
Dye loading into vesicles via endocytosis is induced using an electrical stimulation. After stimulation, nerve terminals are allowed to recover. Then, extracellular dye is washed off with buffer; this also minimizes the background fluorescence. It is important to keep the excitation intensity minimum because FM dyes are prone to photobleaching, which is weakening of fluorescence intensity due to prolonged excitation. Following the short incubation, initial images are obtained. Next, exocytosis is induced with a second electric signal.
After measuring fluorescence at different time points following stimulation, at the end, nerve terminals can be exhaustively stimulated to unload all releasable dye. The fluorescence remaining after that is considered as the background fluorescence intensity. Then, intrinsic fluorescence of each image is measured using the “Region of Interest” tool in a non-synaptic area of the image. The background fluorescence and the intrinsic fluorescence is then subtracted from the fluorescence intensity of each time point to obtain normalized fluorescence intensity, which is then plotted versus time. The decrease in intensity over time represents destaining, which is an indirect measure of vesicle recycling.
Now that we’ve reviewed the methodology, let’s look at how FM dyes are used in specific experiments.
We discussed the protocol using FM dyes in stimulated neurons. Here, scientists were interested in studying spontaneous vesicle recycling. They did this using the established protocol in combination with an imaging system sensitive enough to detect small changes in fluorescence intensity. The results represent a decrease in fluorescence intensity that is directly due to spontaneous synaptic release.
Within the presynaptic neuron, vesicles are divided into two pools: a reserve pool or RP, and a readily releasable pool or RRP. Here, scientists used FM dyes to analyze the fraction of each type in the vesicle population. By sequential application of electrical stimuli of increasing intensities, these scientists were able to quantify the relative percentages of each type of vesicle pool.
Lastly, cell biologist also use FM dyes to dissect factors involved in the exocytic repair of wounded plasma membranes. In this experiment, researchers were particularly focused on the role of sphingomyelinase, a lipid-modifying enzyme, in the membrane resealing process. First, they generated cells deficient in the enzyme sphingomyelinase with the help of silencing RNA treatment. Next, they treated these cells and a control group with exogenous FM dye and a toxin that creates plasma membrane lesions. Finally, they viewed all the samples using a confocal microscope. The results showed that sphingomyelinase deficient cells showed robust accumulation of intracellular FM molecules. On the other hand, control cells showed minimal FM influx, suggesting a role of sphingomyelinase in plasma membrane repair.
You’ve just watched JoVE’s video on FM dyes in vesicle recycling. The video described the biochemistry of FM dyes, detailed a protocol to stain and quantify synaptic vesicle recycling, and finally outlined current experiments utilizing these dyes in different ways. As always, thanks for watching!
Related Videos
Cell Biology
75.6K 浏览
Cell Biology
59.1K 浏览
Cell Biology
73.9K 浏览
Cell Biology
32.4K 浏览
Cell Biology
125.8K 浏览
Cell Biology
13.1K 浏览
Cell Biology
72.4K 浏览
Cell Biology
78.1K 浏览
Cell Biology
12.8K 浏览
Cell Biology
39.8K 浏览
Cell Biology
46.8K 浏览
Cell Biology
31.7K 浏览
Cell Biology
53.6K 浏览
Cell Biology
91.4K 浏览
Cell Biology
74.4K 浏览