Factorial Analysis is an experimental design that applies Analysis of Variance (ANOVA) statistical procedures to examine a change in a dependent variable due to more than one independent variable, also known as factors. Changes in worker productivity can be reasoned, for example, to be influenced by salary and other conditions, such as skill level. One way to test this hypothesis is by categorizing salary into three levels (low, moderate, and high) and skills sets into two levels (entry level vs. experienced).
Naming
This scientific approach is designated a label that either underscores the number of factors or the number of conditions tested for each independent variable. The example experiment above would be described as a two-way factorial ANOVA, because it involves two independent variables. In respect to the number of levels considered for salary (low, moderate, and high) and skill sets (entry level and experienced), this same experiment is also designated as a 3 by 2 design, formally written as a 3 x 2 Factorial ANOVA. Of note, computing the product of 3 and 2 signifies that there is a total of 6 combinations of experimental conditions observed.
Investigative Advantages
Observing the effects of at least two independent variables is a more practical and economical approach. This averts the need to expend time and resources for separate experiments. Furthermore, collecting data for different combinations of conditions enables researchers to make a variety of assessments, including main and interaction effects.
Certain research questions may require understanding know how each factor may independently impact a dependent variable. For example, observed changes in worker productivity scores due to salary are separated from those due to skill level, to help determine the main effects for each. Results could potentially reveal that high productivity found in entry level employees may or may not apply to those who are more experienced. Likewise, low productivity that may be found in low salaried employees may or may not be evident with increased wages. The ability to recognize if results can be generalized to different circumstances or group features thus serves as another advantage for this type of design.
An interaction effect occurs when the influence of an independent variable on a given dependent variable depends on the level of other factors being examined. It might be found, for instance, that the impact of salary on worker productivity may be more pronounced for entry level as opposed to experienced employees. This type of analysis allows researchers to gain a deeper view of patterns that may emerge in the data set.
Implications of Factorial Analysis
Due to its flexibility and practicality, factorial analysis continues to be one of the most common experimental designs used across all disciplines. A recent study, for instance, investigated whether consumer behavior may depend on whether the product is utilitarian or hedonic. In addition to product type, researchers also included product image (close-up vs. wide shot) as a potential factor that influenced purchase decisions. These researchers further examined if type of persuasive technique, such as rational or emotional appeal would have an impact (Kim, Lee, & Choi, 2019). Hedonic products tended to gain more favorable attitudes when a wide shot image was accompanied by emotion inducing advertisements. Inverse findings were observed for utilitarian products in this 2 x 2 x 2 Factorial ANOVA, otherwise known as a three-way ANOVA.
Si un chercheur est curieux d’un sujet, comme les préférences alimentaires des gens, il peut envisager un modèle d’analyse factorielle, c’est-à-dire une approche expérimentale utilisée pour examiner les effets de plus d’un facteur, au moins deux variables indépendantes, sur une variable dépendante.
Par exemple, ils peuvent décider de manipuler deux variables indépendantes : la catégorie d’aliment et la température des aliments. Chaque facteur se compose de deux niveaux : la glace et la soupe sont servies chaudes ou froides. Ce cas est appelé un plan factoriel 2×2, les cotes de faveur fonctionnant comme la seule variable dépendante.
De ce fait, le chercheur peut tester deux types d’hypothèses. L’un d’eux permet de prédire les effets principaux, c’est-à-dire d’évaluer l’influence des conditions sur chaque facteur séparément. Par exemple, pour examiner l’effet principal pour la catégorie d’aliments, les cotes de faveur de la crème glacée seraient comparées à celles de la soupe.
De même, l’observation des préférences des participants entre ces aliments lorsqu’ils sont servis chauds ou froids est liée à l’effet principal sur la température.
L’autre type d’hypothèse, qui est un avantage majeur de l’approche, implique l’évaluation des effets d’interaction. Ceux-ci sont observés lorsque l’effet d’un facteur dépend du niveau des autres facteurs dans le modèle expérimental.
Par exemple, le chercheur prédirait que les gens préfèrent la soupe chaude et la crème glacée froide.
Par conséquent, cette procédure offre un moyen plus efficace et plus rentable de tester plusieurs combinaisons de deux ou plusieurs conditions en même temps. Cependant, l’application de la conception peut s’avérer plus difficile à mesure que le nombre de niveaux et de facteurs augmente.
Par conséquent, les chercheurs doivent prendre certaines précautions tant en termes de méthodologie que d’analyses statistiques lors de l’interprétation de plans d’expérience complexes.
Related Videos
Research Methods
59.1K Vues
Research Methods
11.6K Vues
Research Methods
15.3K Vues
Research Methods
14.7K Vues
Research Methods
15.9K Vues
Research Methods
11.8K Vues
Research Methods
11.1K Vues
Research Methods
8.9K Vues
Research Methods
13.0K Vues
Research Methods
6.1K Vues
Research Methods
10.6K Vues
Research Methods
22.9K Vues
Research Methods
32.2K Vues
Research Methods
10.8K Vues
Research Methods
12.6K Vues
Research Methods
6.3K Vues
Research Methods
15.9K Vues
Research Methods
22.2K Vues
Research Methods
20.1K Vues