RESEARCH
Peer reviewed scientific video journal
Video encyclopedia of advanced research methods
Visualizing science through experiment videos
EDUCATION
Video textbooks for undergraduate courses
Visual demonstrations of key scientific experiments
BUSINESS
Video textbooks for business education
OTHERS
Interactive video based quizzes for formative assessments
Products
RESEARCH
JoVE Journal
Peer reviewed scientific video journal
JoVE Encyclopedia of Experiments
Video encyclopedia of advanced research methods
EDUCATION
JoVE Core
Video textbooks for undergraduates
JoVE Science Education
Visual demonstrations of key scientific experiments
JoVE Lab Manual
Videos of experiments for undergraduate lab courses
BUSINESS
JoVE Business
Video textbooks for business education
Solutions
Language
French
Menu
Menu
Menu
Menu
Please note that some of the translations on this page are AI generated. Click here for the English version.
Reaction centers are pigment-protein complexes that initiate energy conversion from photons to chemical entities. Therefore, photochemical reaction center is a more appropriate term that describes these complexes. The Nobel laureates Robert Emerson and William Arnold provided the first experimental evidence of photochemical reaction centers by demonstrating the participation of nearly 2,500 chlorophyll molecules for the release of just one molecule of oxygen. Despite thousands of photosynthetic pigments present within a photosynthetic unit, only a few have photochemical activity. The reaction centers contain fewer pigment molecules that cannot lead to efficient photosynthesis. Therefore, an antenna complex, having a large number and variety of pigments, accumulates significant quantities of photons and transmits their energy to the reaction center. The photochemically active pigments of the reaction center then convert light energy into high-energy electrons that are utilized for downstream chemical reactions.
In oxygen liberating organisms such as cyanobacteria, green and red algae, and higher plants, the reaction center is found inside both photosystems I and II. It is also present in bacteria with a single photosystem. The reaction center of the bacterium- Rhodopseudomonas viridis is the first integral membrane-bound protein to be isolated and studied. The molecular architecture of the R. viridis reaction center resembles the PSII reaction center but lacks an oxygen-evolving complex and, therefore, the ability to produce oxygen. It comprises four protein subunits, called H, L, M, cytochrome, and 14 cofactors that include bacterial chlorophyll and carotenoids. The L and M subunits harbor two bacterial chlorophyll molecules that absorb a photon of 870nm wavelength, thus the name P870 reaction center. The R. viridis reaction center also comprises a bacterial pheophytin that acts as the primary electron acceptor, a mobile quinone as the terminal electron acceptor, a membrane-bound cytochromes bc1, and a periplasmic cytochrome bc2. Together, these form an integral component of the light-driven electron transfer cycle in R. viridis.
Un centre de réaction photochimique est un complexe pigment-protéine situé au cœur de chaque photosystème.
Les centres de réaction sont regroupés en deux catégories en fonction de leurs accepteurs d’électrons terminaux.
Le centre de réaction de type I a une ferrédoxine et le type II a une molécule de plastoquinone comme accepteur d’électrons terminal.
Chaque centre de réaction possède également une paire spéciale de molécules de chlorophylle A qui absorbent des longueurs d’onde spécifiques de la lumière.
Le centre de réaction PSI absorbe les photons d’une longueur d’onde de 700 nanomètres et est donc appelé P700.
En revanche, le centre de réaction PSII absorbe une longueur d’onde de 680 nanomètres et s’appelle P680.
Malgré leurs différences, le PSI et le PSII fonctionnent tous deux sur un principe très similaire.
Lorsque la paire de chlorophylle dans un centre de réaction absorbe un photon, l’un de ses électrons à l’état fondamental atteint un niveau d’énergie excité.
Par conséquent, la molécule de chlorophylle devient excitée et doit perdre l’énergie excédentaire qu’elle possède pour sa stabilité. Ainsi, il émet l’électron énergisé vers un accepteur d’électrons proche.
La paire d’ions chlorophylle chargée positivement retire ensuite des électrons d’un donneur, comme une molécule d’eau, pour revenir à son état d’origine.
Related Videos
01:00
Chloroplasts and Photosynthesis
8.8K Vues
01:08
Chloroplasts and Photosynthesis
6.4K Vues
01:46
Chloroplasts and Photosynthesis
5.2K Vues
01:29
Chloroplasts and Photosynthesis
4.7K Vues
01:32
Chloroplasts and Photosynthesis
5.9K Vues
01:42
Chloroplasts and Photosynthesis
7.0K Vues
01:34
Chloroplasts and Photosynthesis
11.7K Vues