How can we compare the energy that releases from one reaction to that of another reaction? We use a measurement of free energy to quantitate these energy transfers. Scientists call this free energy Gibbs free energy (abbreviated with the letter G) after Josiah Willard Gibbs, the scientist who developed the measurement. According to the second law of thermodynamics, all energy transfers involve losing some energy in an unusable form such as heat, resulting in entropy. Gibbs free energy specifically refers to the energy of a chemical reaction that is available after we account for entropy. In other words, Gibbs free energy is usable energy, or energy that is available to do work.
Every chemical reaction involves a change in free energy, called delta G (∆G). We can calculate the change in free energy for any system that undergoes such a change, such as a chemical reaction. To calculate ∆G, subtract the amount of energy lost to entropy (denoted as ∆S) from the system's total energy change. The total energy in the system is enthalpy and we denote it as ∆H. The formula for calculating ∆G is as follows, where the symbol T refers to the absolute temperature in Kelvin (degrees Celsius + 273):
ΔG = ΔH − TΔS
We express a chemical reaction's standard free energy change as an amount of energy per mole of the reaction product (either in kilojoules or kilocalories, kJ/mol or kcal/mol; 1 kJ = 0.239 kcal) under standard pH, temperature, and pressure conditions. We generally calculate standard pH, temperature, and pressure conditions at pH 7.0 in biological systems, 25 degrees Celsius, and 100 kilopascals (1 atm pressure), respectively. Note that cellular conditions vary considerably from these standard conditions, and so standard calculated ∆G values for biological reactions will be different inside the cell.
This text is adapted from Openstax, Biology 2e, Section 6.2: Potential, Kinetic, Free, and Activation Energy and Openstax, Chemistry 2e, Section 16.4: Free Energy.
L’énergie libre de Gibbs est l’énergie disponible pour qu’un système puisse effectuer un travail à une température et une pression constantes. Le changement d’énergie libre, ou ∆G, peut être utilisé pour prédire la spontanéité d’une réaction.
Les processus spontanés augmentent l’entropie de l’univers, mais il est difficile de mesurer ce changement d’entropie car il inclut des changements dans le désordre du système étudié et de son environnement.
En utilisant l’équation de l’énergie libre de Gibbs, la spontanéité peut être déterminée par l’enthalpie et la variation d’entropie du système seuls.
Si le système libère de la chaleur, l’environnement absorbe la chaleur, ce qui influence le caractère aléatoire de l’environnement. Mathématiquement, l’entropie de l’environnement est égale à la variation d’enthalpie négative du système divisée par la température.
En réarrangeant l’équation de Gibbs, on voit que le rapport négatif entre le changement d’énergie libre et la température est égal au changement d’entropie de l’univers.
Related Videos
Energy and Catalysis
5.9K Vues
Energy and Catalysis
5.4K Vues
Energy and Catalysis
6.0K Vues
Energy and Catalysis
10.7K Vues
Energy and Catalysis
8.5K Vues
Energy and Catalysis
15.2K Vues
Energy and Catalysis
9.2K Vues
Energy and Catalysis
6.3K Vues
Energy and Catalysis
4.5K Vues
Energy and Catalysis
6.7K Vues
Energy and Catalysis
17.9K Vues
Energy and Catalysis
12.0K Vues
Energy and Catalysis
20.1K Vues
Energy and Catalysis
10.2K Vues
Energy and Catalysis
4.0K Vues
Energy and Catalysis
8.2K Vues
Energy and Catalysis
3.1K Vues
Energy and Catalysis
2.5K Vues
Energy and Catalysis
2.7K Vues
Energy and Catalysis
9.6K Vues
Energy and Catalysis
5.6K Vues
Energy and Catalysis
7.7K Vues