3.20: Stockage et libération de l'ATP

ATP Energy Storage and Release
JoVE Core
Cell Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Cell Biology
ATP Energy Storage and Release

9,566 Views

01:31 min
May 22, 2025

Overview

ATP is a highly unstable molecule. Unless quickly used to perform work, ATP spontaneously dissociates into ADP and inorganic phosphate (Pi), and the free energy released during this process is lost as heat. The energy released by ATP hydrolysis is used to perform work inside the cell and depends on a strategy called energy coupling. Cells couple the exergonic reaction of ATP hydrolysis with endergonic reactions, allowing them to proceed.

One example of energy coupling using ATP involves a transmembrane ion pump that is extremely important for cellular function. This sodium-potassium pump (Na+/K+ pump) drives sodium out of the cell and potassium into the cell. A large percentage of a cell's ATP is spent powering this pump because cellular processes regularly import great amounts of sodium into the cell and export great amounts of potassium out of the cell. The pump constantly works to stabilize cellular concentrations of sodium and potassium. In order for the pump to turn one cycle (exporting three Na+ ions and importing two K+ ions), one molecule of ATP must be hydrolyzed. When ATP is hydrolyzed, its gamma phosphate is transferred onto the pump protein.

This process of a phosphate group binding to a molecule is termed  phosphorylation. As with most cases of ATP hydrolysis, a phosphate from ATP is transferred onto another molecule. In a phosphorylated state, the Na+/K+ pump has more free energy and is triggered to undergo a conformational change. This change allows it to release Na+ to the outside of the cell. It then binds extracellular K+, which, through another conformational change, causes the phosphate to detach from the pump. This release of phosphate triggers the K+ to be released to the inside of the cell. Essentially, the energy released from the hydrolysis of ATP is coupled with the energy required to power the pump and transport Na+ and K+ ions. ATP performs cellular work using this basic form of energy coupling through phosphorylation.

Often during cellular metabolic reactions, such as nutrient synthesis and breakdown, certain molecules must alter slightly in their conformation to become substrates for the next step in the reaction series. One example is during glycolysis, the very first steps of cellular respiration. In this  first step, ATP is required to phosphorylate glucose, creating a high-energy but unstable intermediate. This phosphorylation reaction powers a conformational change that allows the phosphorylated glucose molecule to convert to the phosphorylated sugar fructose. Fructose is a necessary intermediate for glycolysis to move forward. Here, ATP hydrolysis' exergonic reaction, couples with the endergonic reaction of  glucose  phosphorylation constitutes an intermediate step in the pathway. Once again, the energy released by breaking a phosphate bond within ATP was used for phosphorylating another molecule, creating an unstable intermediate and powering an important conformational change.

This text is adapted from Openstax, Biology 2e, Section 6.4:ATP: Adenosine Triphosphate

Transcript

L’adénosine triphosphate ou ATP est la monnaie d’énergie la plus importante qui alimente plusieurs processus biochimiques à l’intérieur d’une cellule vivante.

L’ATP est un composé organique constitué d’une molécule d’adénosine représentée par A, liée à trois groupes phosphate représentés par la lettre P. Les trois phosphates sont reliés les uns aux autres par deux liaisons phosphoanhydride à haute énergie. L’hydrolyse de ces liaisons peut produire environ 46 à 54 kilojoules par mole d’énergie libre, selon les conditions intracellulaires.

Étant donné que la fixation d’un groupe phosphate à une molécule d’ADP est énergétiquement défavorable, les cellules puisent de l’énergie dans la photosynthèse ou la respiration cellulaire pour former la liaison phosphoanhydride entre l’ADP et le troisième groupe phosphate

.

À l’inverse, à la demande d’énergie, l’ATP est hydrolysé en phosphate inorganique et en une molécule d’ADP. Cette réaction énergétiquement favorable est couplée à d’autres réactions défavorables, où le phosphate libéré est transféré au réactif pour former un nouveau produit.

De plus, l’énergie libérée par l’hydrolyse de l’ATP alimente les pompes qui déplacent les solutés à travers les membranes et alimente également la contraction musculaire et les voies de transmission du signal neuronal.

Key Terms and definitions​

Learning Objectives

Questions that this video will help you answer

This video is also useful for