19.7: Chaine respiratoire : complexe III et IV

Electron Transport Chain: Complex III and IV
JoVE Core
Cell Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Cell Biology
Electron Transport Chain: Complex III and IV

7,525 Views

01:43 min
April 30, 2023

Overview

During the electron transport chain, electrons from NADH and FADH2 are first transferred to complexes I and II, respectively. These two complexes then transfer the electrons to ubiquinol, which carries them further to complex III. Complex III passes the electrons across the intermembrane space to Cyt c, which carries them further to complex IV. Complex IV donates electrons to oxygen and reduces it to water. As electrons pass through complexes I, III, and IV, the energy released aids the pumping of protons into the intermembrane space, creating a proton gradient. This proton gradient drives the synthesis of ATP from ADP and inorganic phosphate in complex V or ATP synthase and helps fulfill the cell's energy requirements.

Superoxide Generation in Complex III

The electron transport chain complexes located on the mitochondrial membrane are the major sites of non-enzymatic superoxide generation within a cell. These superoxides are the primary cause of cellular oxidative damage that underlies various degenerative diseases as well as aging. While complexes I and II generate superoxides within the mitochondrial matrix, complex III produces superoxides either inside the matrix or the intermembrane space. 

The actual source of superoxides in complex III is the ubiquinone or Q cycle, where an unstable radical ubisemiquinone (Q•-) is generated. This radical can donate its unpaired electron to oxygen to generate superoxide anions. Drugs such as stigmatellin obstruct the electron flux from ubiquinone to iron-sulfur proteins and prevents the oxidation of ubiquinone to ubisemiquinone, thereby diminishing the generation of superoxides. In contrast, drugs such as Antimycin A can increase the generation of superoxides within the Q-cycle by increasing the steady-state concentration of ubisemiquinone.

Complex IV acts as the Regulatory Center

Cytochrome c oxidase (COX) or Complex IV acts as the final oxygen accepting complex as well as the regulatory center of oxidative phosphorylation in eukaryotic cells. It is regulated through various mechanisms, including allosteric-ATP inhibition. When the cells' ATP/ADP ratio is high, the phosphorylated COX undergoes feedback inhibition by ATP. This allosteric inhibition helps sense the cells' energy levels and adjust ATP synthesis in the mitochondria according to the energy demand.

Transcript

Le troisième complexe de la chaîne de transport d’électrons, la Q-cytochrome c oxydoréductase, est une protéine dimérique qui transfère des électrons de Q au cytochrome c. Chaque monomère comprend onze sous-unités avec trois composants catalytiques : le cytochrome b, le cytochrome c1 et la protéine fer-soufre de Rieske.

Chaque cytochrome b est codé par le génome mitochondrial et possède deux groupes hèmes de type b différents. Chaque cytochrome c1 a un hème de type c, et chaque protéine fer-soufre de Rieske a des amas Fe2-S 2.

Le complexe suivant, la cytochrome c-oxydase, comprend des ions hème et cuivre. Ces cofacteurs séquestrent un atome d’oxygène, permettant le transfert d’électrons du cytochrome c à l’accepteur d’électrons terminal-oxygène. Ce complexe comporte treize sous-unités, dont trois de ses plus grandes sous-unités, COX I, II et III, codées par le génome mitochondrial.

Le processus global de transport d’électrons libère de l’énergie libre, que les complexes I, III et IV utilisent pour pomper des protons dans l’espace intermembranaire.

La force motrice des protons qui en résulte entraîne la rotation du complexe V, ou ATP synthase, qui à son tour catalyse la synthèse de l’ATP à partir de l’ADP et du phosphate inorganique.

Key Terms and definitions​

Learning Objectives

Questions that this video will help you answer

This video is also useful for