Data are individual items of information obtained from a population or sample. Data may be classified as qualitative (categorical), quantitative continuous, or quantitative discrete. Because it is not practical to measure the entire population in a study, researchers use samples to represent the population. A random sample is a representative group from the population chosen by using a method that gives each individual in the population an equal chance of being included in the sample. Random sampling methods include simple random sampling, stratified sampling, cluster sampling, and systematic sampling. Convenience sampling is a nonrandom method of choosing a sample that often produces biased data.
Once the data is collected, it can be described and presented in many different formats. For example, suppose a person is interested in buying a house in a particular area. Not having much information about the house prices, the buyer might ask the real estate agent to give a sample data set of prices. Reading through all the prices in the sample can be a little overwhelming. A better way might be to look at the median price and the variation in the prices. The median and variation are just two ways that one can use to describe data. The agent might also provide a graph of the data, which could be a more convenient way to understand the house prices.
The area of statistics that details the numerical and graphical ways to describe and display the sample data is called "Descriptive Statistics." A statistical graph is a tool that helps one learn about the shape or distribution of a sample or a population. A graph can be a more effective way of presenting data than a stack of numbers because it is easy to observe data clusters and identify positions where there are only a few data values. Newspapers and the Internet use graphs to show trends and to enable readers to compare facts and figures quickly. Some types of graphs that are used to summarize and organize data are the dot plot, the bar graph, the histogram, the stem-and-leaf plot, the frequency polygon (a type of broken line graph), the pie chart, and the box plot.
Rappelons que les données sont généralement classées en données quantitatives et en données qualitatives.
Les données quantitatives représentent les mesures ou le dénombrement de valeurs numériques, telles que les tailles variables des élèves d’une classe.
À l’inverse, les données qualitatives, également appelées données catégorielles, représentent des variables non numériques telles que les différentes couleurs de cheveux.
Pour une analyse statistique efficace, ces grands ensembles de données non organisés sont résumés et représentés numériquement sous forme tabulaire ou visuellement sous forme graphique.
Par exemple, les changements de température mesurés au cours d’une journée peuvent être résumés sous la forme d’un tableau.
Ces données peuvent également être représentées graphiquement. Ici, le temps est donné le long de l’axe horizontal et la température est affichée le long de l’axe vertical.
Les points du graphique sont joints pour former le modèle, ce qui permet de comprendre visuellement comment la température diurne change avec le temps.
Le graphique identifie également les valeurs aberrantes par rapport aux autres valeurs de données qui indiquent des températures extrêmes observées pendant la journée.
Related Videos
Summarizing and Visualizing Data
8.9K Vues
Summarizing and Visualizing Data
20.1K Vues
Summarizing and Visualizing Data
7.6K Vues
Summarizing and Visualizing Data
10.7K Vues
Summarizing and Visualizing Data
57.9K Vues
Summarizing and Visualizing Data
6.8K Vues
Summarizing and Visualizing Data
5.6K Vues
Summarizing and Visualizing Data
12.9K Vues
Summarizing and Visualizing Data
5.4K Vues
Summarizing and Visualizing Data
6.8K Vues
Summarizing and Visualizing Data
4.3K Vues
Summarizing and Visualizing Data
16.1K Vues
Summarizing and Visualizing Data
5.1K Vues
Summarizing and Visualizing Data
6.7K Vues
Summarizing and Visualizing Data
13.8K Vues