3.12: Asymétrie

Skewness
JoVE Core
Statistics
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Statistics
Skewness

11,744 Views

01:06 min
April 30, 2023

Overview

The measures of central tendency calculated from a data set may not reveal much about its intrinsic distribution. If a plot is made of the data set’s values, the mean and the median may not only differ, but also the plot may have more values on one side of the central tendencies. Such a data set is said to be skewed towards that side.

The longer the tail of the plot on one side, the more skewed it is. The skewness of a data set’s values suggests that the measures of central tendency are somewhat crude, missing out on the finer details. In a symmetrical distribution, the mean, median, and mode are the same, while in an asymmetric distribution or skewed data set, the mean and median lie to the left or right of the mode.

For example, the mean income distribution of a country does not shed much light on its income inequality. While a few wealthiest individuals may earn a lot, the majority of the population may earn abysmally. Therefore, income distribution represents a skewed data set.

Transcript

La comparaison entre la moyenne, la médiane et le mode fournit des informations sur la façon dont les données sont distribuées.

Dans cet exemple de graphique, le côté gauche du graphique est l’image miroir du côté droit. C’est ce qu’on appelle la distribution symétrique ou normale des données.

Dans un tel graphique normalement distribué, les valeurs moyenne, médiane et modale se trouvent à la même position indiquée par la ligne pointillée.

Supposons que les côtés gauche et droit du graphique ne soient pas les mêmes, cela entraîne une asymétrie dans la distribution. Ici, la moyenne, la médiane et le mode ne sont pas les mêmes et reflètent les différentes valeurs de l’ensemble de données.

L’asymétrie indique la présence de valeurs aberrantes. Par exemple, dans ce cas, les valeurs aberrantes sont présentes sur le côté droit du graphique.

L’asymétrie est souvent utilisée pour prendre des décisions d’investissement. L’asymétrie des rendements d’un modèle d’investissement indique si l’investissement donnera souvent des gains plus petits et peu de pertes énormes ; ou des pertes fréquentes et quelques gros gains.

Key Terms and definitions​

  • Skewness in Statistics - Refers to a data set's asymmetry around its mean.
  • Mean - Represents the average value from a data set.
  • Median - The middle value in an ordered data set.
  • Skewed Distribution - Data set where values cluster more on one side of the scale.
  • Income Distribution Skewness - Describes income inequality in a population.

Learning Objectives

  • Define Skewness – Understand its relationship with data set distribution (e.g., skewness in statistics).
  • Contrast Mean and Median – Understand how they can differ in skewed data sets (e.g., skewness mean median).
  • Explore Distribution Examples – Look at income inequality as an example (e.g., income distribution skewness).
  • Explain Skewed Distribution – Understand how data concentrates more on one side of the scale.
  • Apply in Data Analysis Context – Understand how skewness interpretation can influence data analysis.

Questions that this video will help you answer

  • What is skewness in statistics and how does it relate to mean and median?
  • What can a skewed distribution reveal in a dataset?
  • In what way does income distribution skewness demonstrate the concept?

This video is also useful for

  • Data Analysts – Understand how skewness interpretation supports data analysis.
  • Educators – Provides a framework to teach statistical distribution and central tendency.
  • Economists – Relevant for interpreting socioeconomic data like income distribution.
  • Statistics Students – Offers insights into concepts like skewness, mean, and median.