19.5:
Le cycle de Krebs : résultat
The citric acid cycle is termed an amphibolic pathway as it operates both anabolically and catabolically. The cyclic reactions balance the flux of the substrates to provide an optimal concentration of NADH and ATP to the cell.
Regulation of Citric Acid Cycle
The citric acid cycle is regulated in several ways, including feedback inhibition, regulation of enzyme activities, and associated anaplerotic or cataplerotic pathways.
The primary substrate of the TCA cycle—acetyl CoA—is produced by the action of pyruvate dehydrogenase (PDH) complex. When produced in excess, acetyl CoA can inhibit the PDH complex. In addition, the high concentration of products, NADH and ATP can also strongly inhibit the PDH complex activity, subsequently inhibiting the citric acid cycle.
Similarly, the enzymes citrate synthase, isocitrate dehydrogenase, and ɑ-ketoglutarate dehydrogenase may undergo allosteric regulation via products and intermediate compounds, such as NADH, ATP, and succinyl CoA, generated during the TCA cycle.
Recycling of TCA Cycle Intermediates
In case of excess production, the TCA cycle intermediates are channeled to other pathways via a process called cataplerosis, where they act as precursors for biosynthesis. These supplied intermediates are called cataplerotic molecules. However, under conditions of limited availability, the TCA cycle can accept the intermediate metabolites from other pathways to keep the cycle running. This mechanism is termed anaplerosis, and the supplied compounds are called anaplerotic molecules.
L’objectif principal du cycle de l’acide citrique est de générer de l’énergie à partir des électrons récoltés à partir de molécules de sucre comme le glucose.
Lorsqu’il entre dans le cycle de l’acide citrique, l’acétyl-CoA subit une série de réactions en perdant son groupe acétyle sous forme de dioxyde de carbone.
Au cours des étapes oxydatives du cycle, les électrons sont transférés au NAD+, générant du NADH.
Le GTP produit à partir de la conversion du succinyl-CoA en succinate est facilement converti en ATP.
Dans la réaction suivante, les électrons de l’oxydation du succinate sont utilisés pour réduire le FAD en FADH2.
Ainsi, chaque tour du cycle du TCA génère deux molécules de CO2, trois NADH, une FADH2 et une ATP.
Le cycle doit faire le tour deux fois puisque l’oxydation de chaque molécule de glucose génère deux pyruvates.
Par conséquent, pour chaque molécule de glucose oxydée, le cycle de l’acide citrique génère quatre molécules de CO2, six de NADH, deux de FADH2 et deux molécules d’ATP.
Les coenzymes – NADH et FADH2 – générées à partir du cycle TCA sont utilisées pendant la phosphorylation oxydative pour produire plus d’ATP.
Related Videos
Mitochondria and Energy Production
13.6K Vues
Mitochondria and Energy Production
11.3K Vues
Mitochondria and Energy Production
3.4K Vues
Mitochondria and Energy Production
17.5K Vues
Mitochondria and Energy Production
7.9K Vues
Mitochondria and Energy Production
14.2K Vues
Mitochondria and Energy Production
7.5K Vues
Mitochondria and Energy Production
14.7K Vues
Mitochondria and Energy Production
16.8K Vues
Mitochondria and Energy Production
2.5K Vues
Mitochondria and Energy Production
12.5K Vues
Mitochondria and Energy Production
3.2K Vues