This protocol describes the use of an enhanced ultrasound technique to non-invasively observe and quantify liver tissue changes in rodent models of nonalcoholic fatty liver disease.
Nonalcoholic Steatohepatitis (NASH) is a condition within the spectrum of Non-Alcoholic Fatty Liver Disease (NAFLD), which is characterized by liver fat accumulation (steatosis) and inflammation leading to fibrosis. Preclinical models closely recapitulating human NASH/NAFLD are essential in drug development. While liver biopsy is currently the gold standard for measuring NAFLD/NASH progression and diagnosis in the clinic, in the preclinical space, either collection of whole liver samples at multiple timepoints during a study or biopsy of liver is needed for histological analysis to assess the disease stage.
Conducting a liver biopsy mid-study is an invasive and labor-intensive procedure, and collecting liver samples to assess disease level increases the number of research animals needed for a study. Thus, there is a need for a reliable, translatable, non-invasive imaging biomarker to detect NASH/NAFLD in these preclinical models. Non-invasive ultrasound-based B-mode images and Shear Wave Elastography (SWE) can be used to measure steatosis as well as liver fibrosis. To assess the utility of SWE in preclinical rodent models of NASH, animals were placed on a pro-NASH diet and underwent non-invasive ultrasound B-mode and shear wave elastography imaging to measure hepatorenal (HR) index and liver elasticity, measuring progression of both liver fat accumulation and tissue stiffness, respectively, at multiple time points over the course of a given NAFLD/NASH study.
The HR index and elasticity numbers were compared to histological markers of steatosis and fibrosis. The results showed strong correlation between the HR index and percentage of Oil Red O (ORO) staining, as well as between elasticity and Picro-Sirius Red (PSR) staining of livers. The strong correlation between classic ex vivo methods and in vivo imaging results provides evidence that shear wave elastography/ultrasound-based imaging can be used to assess disease phenotype and progression in a preclinical model of NAFLD/NASH.
Non-alcoholic fatty liver disease (NAFLD) is a metabolic condition characterized by an excessive buildup of fat in the liver and is quickly becoming a leading liver ailment worldwide with a recently reported global prevalence of 25%1. Non-alcoholic steatohepatitis (NASH) is a more progressed stage of the spectrum of NAFLD, characterized by excess liver fat with progressive cellular damage, inflammation, and fibrosis. These ailments are often silent, undetected via blood tests or routine examinations, until considerable damage has already occurred to a patient's liver. Currently, the gold standard to diagnose NASH in patients is through histological examination of patient-derived liver biopsy samples. Similarly, preclinical researchers who work to understand the pathogenesis of NASH/NAFLD as well as the drug development industry rely on in vivo wedge biopsy of liver samples or terminal euthanasia of satellite cohorts for histology to measure steatosis, inflammation, and fibrosis.
For example, liver wedge biopsy has been a standard technique for assessing steatohepatitis and fibrosis while using the GUBRA NASH model2. The liver wedge biopsy method is invasive and laborious in small animals3. The use of wedge liver biopsy in the middle of a study represents an added experimental variable in a disease model, which often increases the number of animals that are needed. With these factors in mind, non-invasive imaging techniques that can be used to reliably assess steatosis and fibrosis in NASH/NAFLD animal models at early time points prove valuable. Shear wave elastography (SWE) is an ultrasound-based method used to measure the elasticity of soft tissues. The technique measures the propagation of shear waves created by supersonic ultrasound pulses directed at a tissue target, and then calculates a value called E modulus4. The velocity of the shear wave is proportional to the degree of tissue stiffness.
Figure 1 and Figure 2 show the imaging area setup and the SWE instrument. The SWE instrument is a single, wheeled unit with two screens and a control panel shown in Figure 2A. The upper monitor (Figure 2B) acts as the computer monitor and displays images and patient directories. The control panel (Figure 2C) is an array of buttons and dials that control general aspects of image capture: freezing screen, saving images, changing from one mode to another. The lower screen (Figure 2D) is a touch screen with additional controls to change settings and acts as a keyboard to input data as needed. The instrument is equipped with a stylus to use on the touch screen if desired. Ultrasound probes attach to the lower front panel of the device. For B-mode and SWE imaging in rodents, the super-linear 6 to 20 MHz transducer was used. This ability to noninvasively measure tissue stiffness makes SWE a valuable tool for the identification and staging of liver fibrosis5 in NASH patients, decreasing the need for more invasive methods. SWE has, in fact, been used to measure liver fibrosis in patients and is an FDA-approved method to score fibrosis in the clinic6. Using SWE to monitor NASH progression in animal models of the disease would provide a translational tool for the development of treatments and simultaneously improve animal welfare through the reduction of animal subject numbers and refinement of in vivo procedures to minimize pain and distress.
SWE imaging in human patients uses a low-frequency ultrasound transducer4, which is not ideal for small animals. Notably, high-frequency SWE techniques have been used to evaluate the efficacy of acetyl-CoA carboxylase inhibition on pathogenesis of NASH in a rat model7, and the utility of this technique has been described in carbon tetrachloride rat models of liver fibrosis with successful results when compared to traditional METAVIR histological scoring methods8. However, existing literature lacks detailed technique and methodology information on the application of SWE imaging in preclinical models of NASH. As described above, liver steatosis is one of the key features of the NAFLD/NASH condition and is an important stage where intervention can be considered. Thus, assessing liver fat accumulation using an imaging modality is as important as assessing liver fibrosis in preclinical models of NASH/NAFLD.
An ultrasound technique known as the HR index, a ratio of tissue brightness of the liver compared to that of the renal cortex, has been used as a surrogate marker of steatosis in the clinic9,10. This approach, however, has not been extensively used in preclinical animal models of NAFLD/NASH. This article describes a method of measuring elasticity as well as the HR index as a surrogate marker of hepatic fibrosis and steatosis, respectively, in a choline-deficient, high-fat diet (CDAHFD) rat model of NAFLD/NASH. This model induces rapid steatosis, liver inflammation, and fibrosis, which is measurable within 6 weeks in mice11. The addition of cholesterol (1%) to this diet has been shown to promote fibrogenesis in rats12, making this model a suitable candidate for validation studies involving shear wave imaging. Overall, this imaging technology can also be applied to a wide range of NASH models/diets where steatosis and/or fibrosis is an endpoint of interest.
All animal-involved procedures were reviewed and approved by Pfizer's Institutional Animal Care and Use Committee (IACUC) and conducted in an AAALAC (Assessment and Accreditation of Laboratory Animal Care) International accredited facility.
1. Disease induction
2. Instrument setup
3. Subject preparation
4. Image acquisition for hepato-renal (HR) index measurement
5. Image acquisition for Shear Wave Elastography
6. Image data retrieval and analysis
7. Histological analysis of liver samples
8. Statistical analysis
One hallmark of animals fed CDAHFD is steatosis. Accumulation of fat in the liver changes the echogenic properties of the tissue, which can be quantified by measuring the brightness of the liver and normalizing it to the brightness of the renal cortex from a B-mode image taken in the same plane. The quantified value is expressed as an HR index, which is an indirect measure of steatosis. In Figure 4A, a representative liver image from a control animal shows approximately equal or less brightness (echogenicity) compared to the renal cortex. Thus, the HR index of normal animals is <1. In this study, the average HR index of control animals at the 3-week time point is 0.645 ± 0.03. In contrast, a representative B-mode image of a CDAHFD-fed animal (Figure 4A) shows increased brightness of the liver compared to the renal cortex. As a result, the HR indices of representative images from the CDAHFD diet animals were 1.91 and 1.79 at the 6- and 12-week time points, respectively.
Figure 4C shows a plot of HR indices over time from control and CDAHFD animals. Control-diet-fed animals show little movement in HR index values from baseline, whereas CDAHFD animals rise quickly over the course of the first 3-6 weeks of the study before reaching a plateau. The average HR index of animals that were on a CDAHFD diet is 1.861 ± 0.06 compared to 0.328 ± 0.03 in control animals at 12 weeks post-disease induction. As expected, the liver showed a significantly higher positive percent area for ORO staining in the CDAHFD group compared to the control diet group at 6- (34.81 ± 4.66 vs. 0.49 ± 0.11) and 12- (30.08 ± 2.64 vs. 1.17 ± 0.44) week time points (Figure 4B,D). There was also excellent correlation (Pearson r = 0.78) between the percent area of ORO staining with the HR index at the 6- and 12-week time points (Figure 4E). These results suggest the HR index can be a valuable imaging readout to quantify steatosis in preclinical models of NAFLD/NASH.
One of the key elements of measuring liver stiffness via SWE is proper placement of the ROI (Figure 5). The left panel (Figure 5A) shows a representative image with B-mode and SWE mapping of liver from a control diet animal. Proper ROI placement should be over an area that is stable in the color map and represents the section of the liver being measured, with a signal that is not influenced by adjacent structures such as the liver capsule and blood vessels. Tissue stiffness is reported as the E modulus, which is a calculation based on shear wave speed and a determined constant and is expressed in kilopascals (kPa). For control animals, the E modulus falls between 3.5 kPa and 6 kPa. The mean kPa of the ROIs reported in Figure 5A for control animals were 4.6 and 5.5 kPa at the 6- and 12-week time points, respectively, which falls within the expected normal range. Figure 5A shows a representative image of the SWE mode from a CDAHFD animal at 6 and 12 weeks. Here, the ROI has again been placed near the center of the Q Box (shear wave map), based on the colored reference on top of the image.
As expected with this model, the E modulus is much higher in the CDAHFD-fed animal. In these representative images, the mean kPa was 10.5 at 6 weeks and 23.1 kPa at 12 weeks, indicating significant tissue stiffness. A typical NASH diet study utilizing CDAHFD and control chow should reveal a steady progression of liver stiffness due to fibrosis in the CDAHFD-fed animals, while control animals remain the same. Figure 5C shows a gradual increase in elasticity of the liver in CDAHFD animals compared to stable elasticity in control animals over a 12-week period. Control diet elasticity starts at 5.80 ± 0.99 kPa at the 3-week time point and does not display much change (6.14 ± 0.59) over the course of the 12-week study. The choline-deficient diet, however, shows a significant increase quite early, reaching 12.07 ± 2.37 kPa by week 6. The trend in increased elasticity continues in the CDAHFD diet as the study progresses, reaching 24.43 ± 9.29 kPa at 12 weeks post-special diet initiation.
Liver samples were stained with PSR to localize collagen as a correlate of fibrosis. As expected with this model, there is a significantly higher percentage of liver PSR-positive staining observed in CDAHFD animals compared to the control diet at both 6- and 12-week time points (Figure 5D). To establish the utility of the shear wave as a surrogate method to ex vivo staining, shear wave E Modulus numbers were plotted against the PSR-stained area in CDAHFD rats in Figure 5E to determine the correlation. Analysis of the plot revealed a tight cluster with a Pearson 'r' value of 0.88, indicating strong correlation. It should be noted that the results reported here are representative of what would be expected in a study using a choline-deficient, high-fat diet to induce NASH. This method can also be used with other preclinical NASH models; however, it will produce different results and cut-off values depending on the disease induction protocol. Like the rat NASH model, the SWE imaging in the CDAHFD-induced NASH mouse model showed excellent correlation between liver elasticity values and the percentage of PSR-positive stained area in liver13. Thus, SWE can be a valuable tool to assess liver fibrosis in preclinical models of NAFLD/NASH.
Figure 1: Imaging setup. The ultrasound transducer (a) is held by the descending arm. The imaging stage (b) has an area to clamp the anesthesia hose and set up a nose cone (c) for continuous anesthesia during imaging. The stage is also heated and equipped with probes to monitor body temperature. Please click here to view a larger version of this figure.
Figure 2: The Shear Wave Elastography instrument. (A) The shear wave elastography instrument is a single, wheeled unit with attachment ports for up to 4 ultrasound probes. (B) The upper monitor serves as the visual output for real-time viewing of images, as well as displaying patient data and system inventory. (C) The central control panel contains most of the buttons and knobs needed to adjust display and acquire images. (D) The lower monitor is a touch screen with additional controls and commands for image acquisition and adjustment. Please click here to view a larger version of this figure.
Figure 3: Animal positioning and proper transducer placement. (A) Once an animal has been properly placed on the stage and restrained with tape-in left lateral recumbency (B) the ultrasound probe is lowered onto the rat, touching the gel placed on the abdomen/side. When the probe is touching the gel in the position in panel B, the kidney and liver can be seen in juxtaposition on the monitor. This is an optimal position to collect the hepato-renal index, and in some cases, the shear wave numbers as well. Please click here to view a larger version of this figure.
Figure 4: Hepato-renal index results. (A) Representative image of HR indices from control and CDAHFD diet rats at 6- and 12-week time points. ROIs (red) were drawn in the kidney (left circle) and liver (right circle), then a ratio of the signals was determined (B Ratio, right data table). (B) Representative ORO-stained histological sections of liver samples from control and CDAHFD diet rats at 6- and 12-week time points. Scale bars = 300 µm. (C) Graphical representation of the HR index over a disease-inducing diet time course. Control rat data are represented in blue, CDAHFD rat data in red. The graph shows mean values with standard error of the mean (n = 20 at the 3-week time point and n = 20 for control and n= 19 for CDAHFD at 6 weeks, n = 10 at 9- and 12-week time points (comparing control versus CDAHFD at each time point *, **, ***, ****p < 0.001). (D) Liver ORO calculations plotted for each time point (n = 10). The graph shows median values with interquartile range (*, ** p < 0.001). (E) Correlation graph comparing percent liver ORO-positive area versus the HR index. Abbreviations: HR = hepato-renal; CDAHFD = choline-deficient, high-fat diet; ROIs = regions of interest; ORO = Oil Red O. Please click here to view a larger version of this figure.
Figure 5: Shear wave elastography results. (A) Representative image of SWE maps from control and CDAHFD diet rats at 6- and 12-week time points. ROIs (red) were drawn in the kidney (left circle) and liver (right circle), then a ratio of the signals was determined (B Ratio, right data table). (B) Representative ORO-stained histological sections of liver samples from control and CDAHFD diet rats at 6- and 12-week time points. The Scale bar on histological sections is 300 µm. (C) Graphical representation of liver tissue stiffness in a 12-week-diet-induced NASH rat model. Groups were fed normal chow (blue) or choline-deficient, high-fat diet (red) (n = 20 at 3 and 6 weeks, n = 10 at 9- and 12-week time points). The graph shows mean values with standard error of the mean (n = 20 at 3 and 6 weeks, n = 10 at 9- and 12-week time points (comparing control versus CDAHFD at each time point *, **, *** p < 0.001). (D) Graphical representation of collagen distribution in ex vivo histologic liver samples using collagen-specific PSR stain (n = 10). The graph shows median values with interquartile range (*, ** P < 0.001) (E) Correlation graph comparing percent positive liver PSR staining area versus SWE elasticity. SWE = shear wave elastography; CDAHFD = choline-deficient, high-fat diet; ROIs = regions of interest; ORO = Oil Red O; NASH = nonalcoholic steatohepatitis; PSR = Picro Sirius Red. Please click here to view a larger version of this figure.
Ultrasound-based imaging, including SWE, can be an invaluable tool for the longitudinal assessment of liver steatosis and stiffness in preclinical models of NAFLD/NASH. This paper describes detailed methodologies on how to acquire high-quality B-mode as well as SWE images of livers for the measurement of the HR index and elasticity using a CDAHFD diet-induced rat model of NASH. Further, the results show excellent correlation of the HR index and elasticity with the gold standard of evaluation-histological assessment of liver tissue. While the procedure itself appears to be uncomplicated, there are some critical aspects of the protocol that will ensure successful outcomes.
The placement of the transducer is key, especially when looking for the kidney to measure the HR index in B-mode. Placing the probe too close to the ribs can result in rib shadow, which creates false measures of ultrasound attenuation. Further, the removal of all hair using both shaving and depilation cream is important, as remaining hair can trap air bubbles, which will cast shadows on B-mode images. Finally, as the presence of food in the stomach and intestines can obscure the liver, especially in normal chow-fed animals, adequate fasting of all animals is critical to successful imaging of the liver.
Although liver elasticity measurements from SWE and the HR index are valuable readouts to assess liver fibrosis and steatosis in preclinical models of NASH, the technique has a few limitations. Factors such as inflammation, hepatic congestion, cholestasis, and outflow tract obstruction influence liver stiffness and thus, may influence the overall specificity of this technique in measuring liver fibrosis8,14,15,16. Similarly, brightness of the liver in B-mode ultrasound images can be influenced by fibrosis and thus, may affect the accuracy of the HR index in measuring steatosis. More studies are needed to clarify the contribution of these influencing factors on elasticity and steatosis and establish cut-off values for these readouts in different preclinical models of NASH. Further, this study did not evaluate the sensitivity of the HR index as a biomarker to assess liver steatosis in a preclinical efficacy study.
Measurement of liver stiffness using SWE has the potential to become a valuable tool for understanding the pathophysiology of NASH/NAFLD as well as for developing novel treatments for this condition. By allowing the researcher to determine both liver steatosis and tissue stiffness without the need for an invasive biopsy, animals in preclinical studies can be monitored longitudinally, and drug effects on individual subjects can be quantified over time.
The authors have nothing to disclose.
The authors would like to thank the Pfizer Comparative Medicine Operations Team for their hard work caring for and ensuring the health of the study animals as well as assisting with some of the techniques. Also, thanks are owed to Danielle Crowell, Gary Seitis, and Jennifer Ashley Olson for their help with tissue processing for histological analyses. In addition, authors would like to thank Julita Ramirez for reviewing and providing valuable feedback during preparation of this manuscript.
Aixplorer | Supersonic Imagine | Shear Wave Elastography Instrument | |
Aixplorer SuperLinear SLH20-6 Transducer | Supersonic Imagine | Transducer for Shear Wave Elastography | |
Alpha-dri bedding | rat cages | ||
Aperio AT2 scanner | Leica Biosystems | Digital Pathology Brightfield Scanner | |
Compac 6 Anesthesia System | VetEquip | Anesthesia Vaporizer and Delivery System. Any anesthesia delivery system can be used, however. | |
Manage Imager Database | Leica Biosystems | Digital Pathology | |
Mayer's Hematoxilin | Dako/Agilent | H&E Staining/Histology | |
Nair | Church & Dwight | Hair remover | |
Oil Red O solution | Poly Scientific | Lipid Staining/Histology | |
Picrosirius Red Stain (PSR) | Rowley Biochemical | F-357-2 | Collagen Stain/Histology |
Puralube Opthalmic ointment | Dechra Veterinary Product | Lubricatn to prevent eye dryness during anesthesia | |
Tissue-Tek Prisma Plus | Sakura Finetek USA | Automated slide stainer | |
VISIOPHARM software | Visiopharm | Digital pathology software | |
Research Diets | A06071309i | NASH inducing diet | |
Purina | 5053 | Control animal chow | |
Wistar Han rats | Charles River Laboratories |