The present study provides a modified protocol to isolate synovial macrophages and fibroblasts from murine inflammatory arthritis tissue.
Rheumatoid arthritis is an autoimmune disease that leads to chronic inflammation of joints. Synovial macrophages and synovial fibroblasts have central roles in the pathogenesis of rheumatoid arthritis. It is important to understand the functions of both cell populations to reveal the mechanisms underlying pathological progression and remission in inflammatory arthritis. In general, in vitro experimental conditions should mimic the in vivo environment as much as possible. Primary tissue-derived cells have been used in experiments characterizing synovial fibroblasts in arthritis. In contrast, in experiments investigating the biological functions of macrophages in inflammatory arthritis, cell lines, bone marrow-derived macrophages, and blood monocyte-derived macrophages have been used. However, it is unclear whether such macrophages actually reflect the functions of tissue-resident macrophages. To obtain resident macrophages, previous protocols were modified to isolate and expand both primary macrophages and fibroblasts from synovial tissue in an inflammatory arthritis mouse model. These primary synovial cells may be useful for in vitro analysis of inflammatory arthritis.
Rheumatoid arthritis (RA) is an autoimmune disease characterized by hyperplasia of the synovium, leading to joint destruction1,2. Tissue-resident macrophages and fibroblasts are present in healthy synovium to maintain joint homeostasis. In RA patients, synovial fibroblasts (SFs) proliferate, and immune cells, including monocytes, infiltrate into the synovium and joint fluid, processes associated with inflammation1,3,4. Synovial macrophages (SMs), which include resident macrophages and peripheral blood monocyte-derived macrophages, and SFs are aberrantly activated and have important roles in RA pathogenesis. Recent studies have suggested that cell-cell interactions between SMs and SFs contributes to both the exacerbation and remission of RA5,6.
To understand RA pathogenesis, several rodent models of inflammatory arthritis have been used, including K/BxN serum transfer arthritis, collagen-induced arthritis, and collagen antibody-induced arthritis. Cell-based assays are generally required to clarify molecular functions in arthritis. Therefore, primary cells from animal models of arthritis have been isolated. The method to isolate SFs from murine arthritis tissue is well established, and these cells have contributed to the elucidation of molecular mechanisms in arthritis pathogenesis7,8. On the other hand, bone marrow-derived macrophages, blood monocyte-derived macrophages, and macrophage cell lines have often been used as macrophage resources for arthritis studies9,10. Since macrophages can acquire functions associated with their microenvironment, general sources of macrophages may lack responses specific to arthritis tissue. In addition, it is difficult to obtain enough synovial cells by sorting, as murine synovium is a very small tissue even in arthritis models. The lack of usage of synovial macrophages for in vitro studies has been a limitation in arthritis studies. The establishment of a protocol to isolate and expand synovial macrophages would be an advantage for the elucidation of pathological mechanisms in RA.
In the previous method to isolate SFs, SMs were discarded7. Besides that, a method to isolate and expand resident macrophages from some organs was reported11. Therefore, existing protocols were modified in combination. The modification aims to achieve the primary culture of both SMs and SFs with high purity. The overall goal of this method is to isolate and expand both SMs and SFs from murine arthritis tissue.
Experiments involving animals were approved by the Animal Experiment Committee of Ehime University and were performed in accordance with Ehime University Guidelines for Animal Experiments (37A1-1*16).
1. Preparation of instruments, reagents, and culture medium
2. Preparation of synovitis tissue in mice ( Figure 1A)
3. Digestion of synovitis tissue ( Figure 1B)
Figure 1: Procedure of sampling of murine arthritis tissue and collagenase digestion. (A) (i) Murine hind paw with inflammatory arthritis. (ii) Removal of the skin on the hind paw. (iii) Dislocation of the metatarsophalangeal joints and removal of the toes. (iv) Cutting of the tendons in the ankle. (v) Removal of the muscles in the lower legs. (vi) Dislocation of the knee joint. (B) Left; excised legs in culture medium. Right; dislocated tarsus and metatarsus in culture medium. Please click here to view a larger version of this figure.
4. Isolation of synovial fibroblasts ( Figure 2A)
5. Isolation of synovial macrophages ( Figure 2A)
Figure 2: Separation of macrophage-rich and fibroblast-rich fractions from inflammatory arthritis tissue. (A) Schema of the procedure to separate macrophage-rich and fibroblast-rich cells from arthritis tissue. (B) Representative phase contrast images of stages of the procedure, (i) to (v) in Figure 2A. Scale bar represents 100 µm. Please click here to view a larger version of this figure.
Female C57BL/6 mice at 7-8 weeks of age underwent collagen antibody-induced arthritis. Macrophage-like cells and fibroblast-like cells were independently isolated from inflammatory arthritis tissue according to the procedure described above (Figure 2A,B). Macrophage-like cells were immediately used after step 5.7. Fibroblast-like cells were initially cultured to be sub-confluent after step 4.4, and then passaged to a new culture dish followed by usage. To evaluate whether SMs and SFs were successfully isolated, the following experiments were performed.
To assess the purity of the isolated cells, mRNA expression of various cell markers was analyzed by RT-qPCR. Cd68, Emr1, Itgam, and Csf1r were used as pan-macrophage markers, and Cdh11, Col6a1, Csf1, and Vcam1 were used as SF markers. Rplp0 was used as reference gene6,8. All marker genes were normalized by Rplp0 expression. Both cell-type markers were analyzed in the macrophage-like cells, and fibroblast-like cells were obtained from arthritis tissue. SF markers were expressed in fibroblast-like cells and pan-macrophage markers were expressed in macrophage-like cells, suggesting that macrophage-rich and fibroblast-rich fractions were isolated from synovitis tissue, respectively (Figure 3A,B).
To establish the purity of macrophages, surface protein markers for macrophages and other cell types were analyzed by flow cytometry. F4/80 and CD11b were used for macrophage markers, Ly6G for a neutrophil marker, and CD3 for a T cell marker6. The gating strategy was used as previously shown6. More than 90% of the cells expressed CD45, CD11b, and F4/80, whereas the expression of Ly6G and CD3 was lower than 1% (Figure 4).
Figure 3: mRNA expression of cell-type specific markers. (A) mRNA expression of pan-macrophage markers (Cd68, Emr1, Itgam, Csf1r) in synovial macrophages (SMs) and synovial fibroblasts (SFs) by RT-qPCR (n = 4). (B) Expression levels of SF markers (Cdh11, Col6a1, Csf1, Vcam1) in SMs and SFs (n = 4). Data are presented as averages ± SD. ** indicates p < 0.01 by an unpaired t-test. Data was obtained from four independent experiments. Please click here to view a larger version of this figure.
Figure 4: Cell-type specific cell surface protein expression. Representative histograms obtained in flow cytometric analyses of leukocyte surface markers (CD45, CD11b, F4/80, Ly6g, CD3) in synovial macrophages (SMs). Please click here to view a larger version of this figure.
This method developed here improves upon previous techniques for isolating both SFs from murine arthritis and resident macrophages from a number of organs7,11. The modified method can isolate both macrophages and fibroblasts from inflammatory synovium with high purity, and it is simple and reproducible. Since the method does not require complex instruments such as a cell sorter, anyone can conduct it. In addition, the present technique avoids concerns associated with other methods, such as fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) which may induce damage and stress in cells due to treatment with antibodies and the physical effects associated with sorting12,13. The resultant cells can be used for investigation with relatively few unnecessary external stimuli. Previously, in vitro analysis of tissue-resident macrophages from the synovium has been difficult, as the number of cells isolated is small, even under arthritic conditions in mice. This method allows the expansion of SMs under co-culture with SFs, as well as the previous method for macrophages from the liver, spleen, lung, and brain11. In addition, the qPCR result suggests that only one passage of SFs allows a high enough level of purity (Figure 3B), although a previous method to isolate SFs required at least three passages7. The lack of a purity check of SFs by flow cytometric analyses is a limitation of this study. However, the method also provides an advantage in that SFs can be used with fewer passages.
The critical step to isolate synovial cells with high purity is to avoid the contamination of bacteria and/or bone marrow-derived cells. Disinfected mice should be managed with sterile tools. In particular, isolated ankle samples should contain as little hair as possible. If a lot of hair is present in the samples, increased washing (step 3.1) should be performed. Also, bones obtained from arthritis are often brittle14; dislocation of the metatarsophalangeal joints requires great care to avoid fracture, and contamination of bone marrow-derived cells by a fracture would interrupt the quality of synovial cells. If the bone is fractured, the broken bone should be removed immediately.
A recent single-cell RNA sequence analysis revealed that several sub-populations of SMs and SFs are present in the synovium5,15. In this method, bulk cells, including heterogeneous sub-populations, may be cultured. In general, the heterogeneity of the cells is lost under in vitro conditions16. Indeed, a previous RNA-sequence analysis indicated that cells obtained by this method have more characteristics, including some sub-populations in terms of a gene expression pattern, than a particular characteristic of a sub-population6. This suggests that cells obtained by this method may have some characteristics of the microenvironment of synovial tissue. Therefore, this technique anticipates being useful as a new approach to studying cell populations in inflammatory arthritis.
Since the development of swelling after experimental arthritis induction is generally monitored in ankles8,10,15, the method of synovial cell isolation from only ankle tissues was provided here. The cells obtained by the methods developed here could be used with other joints such as knee and/or other arthritis models. However, the purity, cell number, and proliferative capacity might be different. This method also could be used for the isolation of macrophages from human synovium; however, verification is required.
The authors have nothing to disclose.
The authors thank the staff at the Division of Medical Research Support, the Advanced Research Support Center (ADRES), and the members of the Division of Integrative Pathophysiology, Proteo-Science Center (PROS), Ehime University, for their technical assistance and helpful support. This study was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI grants JP17K17929, JP19K16015, JP21K05974 (to NS) and JP23689066, JP15H04961, JP15K15552, JP17K19728, JP19H03786 (to YI); grants from the Osaka Medical Research Foundation for Intractable Diseases, The Nakatomi Foundation, The Japanese Society for Bone and Mineral Research (JSBMR) Rising Stars Grant, The Sumitomo Foundation, SENSHIN Medical Research Foundation, The Mochida Memorial Foundation (to NS); and a Takeda Science Foundation Medical Research grant, UCB Japan (UCBJ) project grant, and the JSBMR Frontier Scientist grant 2019 (to YI).
5.0 g/L Trypsin/5.3 mmol/L EDTA solution | nacalai tesque | 35556-44 | Diluted with HBSS |
Antibiotic–antimycotic (anti/anti) | Gibco | 15240-062 | |
Butterfly needle | TERUMO | SV-23DLK | 23G |
Cell strainer | Falcon | 352340 | 40 µm pore, Nylon |
Cellmatrix Type I-C | Nitta gelatin | 637-00773 | Type I-C collagen |
Centriguge tube 15 | TPP | 91014 | 15 mL tube |
Centriguge tube 50 | TPP | 91050 | 50 mL tube |
Collagenase from C. Histolyticum | Sigma | C5138 | Type IV collagenase |
Dulbecco’s Modified Eagle Medium GlutaMax (DMEM) | Gibco | 10569-010 | |
Fetal bovine serum (FBS) | SIGAM | 173012 | Heat inactivation was performed |
Hanks' balanced salt solution (HBSS) | Wako | 085-09355 | |
Scissors | Bio Research Center | PRI28-1525A | |
Tissue culture dish 40 | TPP | 93040 | For cell culture |
Tissue culture dish 60 | TPP | 92006 | For cell culture |
Tweezers | KFI | 1-9749-31 | Fine-point |
Tweezers | Bio Research Center | PRI28-1522 | Serrated tip |
ZEISS Stemi 305 | ZEISS | STEMI305-EDU | Stereomicroscope |