Summary

心房細動のロボットアブレーション

Published: May 29, 2015
doi:
Please note that all translations are automatically generated. Click here for the English version.

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Disclosures

The authors have nothing to disclose.

Acknowledgements

Materials

Amigo Remote Catheter SystemCatheter Robotics/Boston ScientificRobotic system
BRK transseptal needle (71 cm)St Jude MedicalNeedle for transseptal puncture
8.5 F SR0 sheathSwartz/St Jude Medicallong sheath to access the left atrium and to provide stability for the ablation catheter
8.5 F SL0 sheathSwartz/St Jude Medicallong sheath to access the left atrium and to provide stability for the LASSO catheter
LASSO catheter + cableBiosense WebsterCircular mapping catheter (7 F) to measure electrical activity in the pulmonary veins
IBI inquiry decapolar catheter + cableSt Jude MedicalCoronary sinus catheter
Thermocool SmartTouchBiosense Websteropen-irrigated ablation catheter (7,5 F) with a 3,5 mm tip and contact force measurement, the tip is heated to apply thermal lesions in the left atril myocardium
HeparinBraun1. heparinized irrgation solution for preparation of the sheath,2. intravenous unfractionated heparin for procedural anticoagulation
PropofolFreseniusProcedural sedation
MidazolamRocheProcedural sedation
NaCl solutionBraunIrrigation solution for the ablation catheter
CARTOBiosense WebsterMapping System and contact force measurement; this system allows a 3-D- reconstrcution of the left atrium and navigation of the moving catheter
UHS-20BiotronikElectrical Stimulator for stimulation of cardiac tissue via catehetr tip of the LASSO-, CS- or ablation catheter
EP ShuttleStockertAblation Generator for application of energy and thermal lesion via the catheter tip
6 F sheathTerumosheath to provide femoral access
Lifepack 15 defibrillatorPhysio ControlDefibrillator/monitoring device
Pericardiocentesis setvariuousEmergency set

References

  1. Camm, A. J., et al. 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: An update of the 2010 ESC Guidelines for the management of atrial fibrillation * Developed with the special contribution of the European Heart Rhythm Association. Eur Heart J. 33 (21), 2719-2747 (2012).
  2. Calkins, H., et al. HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. J Interv Card Electrophysiol. 33, 171-257 (2012).
  3. Ouyang, F., et al. Recovered pulmonary vein conduction as a dominant factor for recurrent atrial tachyarrhythmias after complete circular isolation of the PVs: lessons from double Lasso technique. Circulation. 111, 127-135 (2005).
  4. Reddy, V. Y., et al. Low catheter-tissue contact force results in late pv reconnection—initial results from. EFFICAS I. Heart Rhythm. 8, S26 (2011).
  5. Nguyen, B. L., Merino, J. L., Gang, E. S. Remote Navigation for Ablation Procedures – A New Step Forward in the Treatment of Cardiac Arrhythmias. European Cardiology. 6, 50-56 (2010).
  6. Malcolme-Lawes, L. C., et al. Robotic assistance and general anaesthesia improve catheter stability and increase signal attenuation during atrial fibrillation ablation. Europace. 15 (1), 41-47 (2013).
  7. Wutzler, A., et al. Robotic ablation of atrial fibrillation with a new remote catheter system. J Interv Card Electrophysiol. 40 (3), 215-219 (2014).
  8. Datino, T., et al. Comparison of the safety and feasibility of arrhythmia ablation using the Amigo Robotic Remote Catheter System versus manual ablation. Am J Cardiol. 113 (5), 827-831 (2014).
  9. Khan, E. M., et al. First experience with a novel robotic remote catheter system: Amigo™ mapping trial. J Interv Card Electrophysiol. 37 (2), 121-129 (2013).
  10. Hocini, M., et al. Prevalence of pulmonary vein disconnection after anatomical ablation for atrial fibrillation: consequences of wide atrial encircling of the pulmonary veins. Eur Heart J. 26 (7), 696-704 (2005).
  11. Morillo, C. A., et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of paroxysmal atrial fibrillation (RAAFT-2): a randomized trial. JAMA. 311 (7), 692-700 (2014).
  12. Rillig, A., et al. Persistent iatrogenic atrial septal defect after a single-puncture, double-transseptal approach for pulmonary vein isolation using a remote robotic navigation system: results from a prospective study. Europace. 12 (3), 331-336 (2010).
  13. Hlivák, P., Mlčochová, H., Peichl, P., Cihák, R., Wichterle, D., Kautzner, J. Robotic navigation in catheter ablation for paroxysmal atrial fibrillation: midterm efficacy and predictors of postablation arrhythmia recurrences. J Cardiovasc Electrophysiol. 22 (5), 534-540 (2011).
  14. Saliba, W., et al. Atrial fibrillation ablation using a robotic catheter remote control system: initial human experience and long-term follow-up results. J Am Coll Cardiol. 51 (25), 2407-2411 (2008).
  15. Haldar, S., et al. Contact force sensing technology identifies sites of inadequate contact and reduces acute pulmonary vein reconnection: a prospective case control study. Int J Cardiol. 168 (2), 1160-1166 (2013).
  16. Tilz, R. R., et al. Unexpected high incidence of esophageal injury following pulmonary vein isolation using robotic navigation. J Cardiovasc Electrophysiol. 21 (8), 853-858 (2010).
  17. Hahn, R. T., et al. Guidelines for Performing a Comprehensive Transesophageal Echocardiographic Examination: Recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. Anesth Analg. (1), 21-68 (2014).
Robotic Ablation of Atrial Fibrillation

Play Video

Cite This Article
Wutzler, A., Wolber, T., Haverkamp, W., Boldt, L. Robotic Ablation of Atrial Fibrillation. J. Vis. Exp. (99), e52560, doi:10.3791/52560 (2015).

View Video