再結晶により物質を浄化

JoVE Science Education
有機化学
This content is Free Access.
JoVE Science Education 有機化学
Purifying Compounds by Recrystallization

692,872 Views

09:58 min
April 30, 2023

概要

ソース: 博士ジミー フランコ – メリマック大学講座

再結晶は、固体の化合物を浄化するために使用される手法です。1固体はより冷たい液体でより熱い液体に溶解する傾向があります。再結晶化、ソリューションが飽和し、液体は冷却する許可まで、不純な固体化合物は熱い液体で溶解します。2化合物は、比較的純粋な結晶を形成する必要があります。理想的には、存在する不純物は、溶液中に残ってし、(図 1)、成長の結晶に組み込まれません。結晶は、濾過によりソリューションから除去することができます。回復可能なすべての化合物は-いくつかのソリューションに残ります、失われます。

再結晶は一般的に予想外の分離の手法としてむしろ、それは化合物から少量の不純物を除去する精製技術です。ただし、2 つの化合物の溶解度特性が十分に異なる場合、再結晶化は、ほぼ均等に存在している場合でも、それらを分離する使用できます。再結晶は、ほとんど不純物が抽出または列クロマトグラフィーなどの別の方法で既に削除された場合に最適です。

Figure 1
図 1再結晶の一般的なスキーム

原則

成功した再結晶溶媒の適切な選択により異なります。化合物は、寒い時に熱い溶媒と同じ溶媒に不溶可溶必要があります。再結晶、目的間を考慮する 3 w/v の分割線水溶性と不溶性: 水溶性化合物の 3 g は、100 mL の溶媒に溶解する場合があります。再結晶溶媒、熱い溶解度と溶解性冷間違いが大きい、回復可能なより多くの製品を選択します。

冷却の率は、サイズと結晶の品質を決定します: 小さな結晶を支持する急速な冷却と大規模な一般的に純粋な結晶の成長を支持する遅い冷却します。再結晶化の率は通常、物質の融点以下約 50 ° C で最大最大結晶形成に融点以下約 100 ° C で発生します。

用語「結晶化」と「再結晶」が同じ意味で使用される時が、彼らは技術的に別のプロセスを参照してください。化学反応によって新たに不溶解性製品の形成は、結晶化この製品を多くのトラップ不純物を含む非晶質固体として反応液から沈殿させます。化学反応を伴わない再結晶粗生成物は単にソリューションに溶解し、再形成する結晶を許可する条件を変更し。再結晶より純粋な最終的な製品を生成します。このため、通常結晶化による強固な製品を作り出す実験プロシージャには純粋な化合物を与える最終的な再結晶のステップが含まれます。

手順

溶剤ガスへの暴露を防ぐためにヒューム フードのすべての手順を実行します。 1. 溶媒を選択します。 三角フラスコに 50 mg のサンプル (N ブロモスクシンイミド) を配置します。 0.5 mL の沸騰の溶媒 (水) を追加します。試料が完全に溶解する場合は、良い結晶溶媒に冷たい溶媒で溶解度が大きすぎます。 サンプルは冷たい溶媒中に溶解しない場合、は、溶媒は沸騰するまでテスト チューブを熱します。 サンプルが完全にこの時点で解散はない場合、は、すべての固体が溶解するまでにもっと沸点溶媒を drop-wise、追加しています。熱い溶媒中で試料を溶かす 3 mL 以上かかる場合、この溶媒の溶解性が良い再結晶溶媒にする低すぎるおそらく。 溶媒の最初の選択肢は良い再結晶溶媒で、他を試してください。動作単一溶剤が見つからない場合、2 つの溶媒系をしようと。 適切な単一溶剤システムを見つけることができない場合、溶媒ペアが必要かもしれません。溶媒のペアを識別するには、いくつかの重要な考慮事項 1 があります) 最初の溶媒は容易に固体を解散すべきです。2) 2 つ目の溶媒では、1st溶剤と混和性であるが、溶質のはるかに低い溶解度する必要があります。 一般的なルールとして「好きなものディゾルブ好き」極性化合物の極性溶媒と非極性化合物に溶解する傾向があることを意味は、しばしばより水溶性の非極性化合物。 一般的な溶剤ペア (表 1) 沸騰の溶媒および室内温度溶媒間の適度な温度差があるので、溶剤が、少なくとも 40 の ° C の沸点であることを確認します。 あることを確認、溶媒沸点以下約 120 ° C 結晶から溶媒の最後の痕跡を削除する方が簡単です。 また溶媒の沸点は化合物形成不水溶性廃油としてではなく、固体の結晶としてので、化合物の融点よりも低いであることを確認します。 不純物がどちらかであることを確認 (彼らは化合物を分解したら、ホット フィルターできます) ので熱い溶媒に不溶または (し、全体のプロセスの中に溶解したまま) 冷たい溶媒に不溶。 2. 熱い溶媒中でサンプルの溶解 三角フラスコで再結晶する化合物を配置します。これは、傾斜の側面トラップ溶剤蒸気を助けるおよび蒸発の速度が遅いので、ビーカーよりもより良い選択です。 別のエルレンマイヤー フラスコに溶媒 (水) を配置し、沸騰のチップやスムーズに沸騰を維持する攪拌棒を追加します。ホット プレートの上に沸騰にそれを熱する。 化合物が完全に溶けるまで、各付加の後で旋回、小さな部分に化合物を含有する室温でフラスコに熱い溶媒を追加します。 溶解処理中にソリューションを保持でホットすべての回でも、ホット プレートの上に休憩します。必要 – 以上より熱い溶媒を追加しない試料を溶かすだけで十分。 固体の部分が解消しない場合は熱い溶媒を追加すると後でさえもそうだ非常に不溶解性の不純物の存在のため。この場合、溶媒を追加するを停止し、続行する前に熱いろ過を行います。 熱いろ過を実行するためにフルーティングを施された円錐形フィルター紙を折るし、ガラスの茎のない漏斗に入れます。 手順で蒸発を許可する高温の溶液に熱い溶媒の 10-20% 過剰を追加します。 紙を溶液を注ぐ。結晶開始フォーム プロセス中にいつでも場合、は、それらを解消する温かみのある溶媒の小さな部分を追加します。 3. 冷却ソリューション フラスコは行われません熱を離れて早すぎる、または卓上セット ペーパー タオルなど表面に溶存化合物を含有を設定します。 軽く冷やす蒸発を防ぐために、ソリューションに陥るからほこりを防ぐためにフラスコをカバーします。 それは部屋の温度に冷却するまでフラスコを妨げられていない残します。 結晶を形成している、一度結晶の最大量が得られることを確保するための氷浴にソリューションを配置します。ソリューションは、30 分間氷浴で妨げられていない 1 h に委ねられるべきまたは化合物表示が完全に解決から結晶化するまで。 それが中を掻くことによって誘起すること結晶形成を明らかにしない場合ガラス棒または同じ化合物の小さな種結晶を追加することによってフラスコの壁。 これはまだ動作するように失敗した場合、あまりにも多くの溶媒は使用でしょう。ソリューションを再加熱、ボイルオフガス、溶媒のいくつかを許可し、それを冷却します。 4. 分離と水晶の乾燥 冷たいフラスコ、ベンチトップに新たに形成された結晶を含むを設定します。 軽く蒸発を防ぐために、ソリューションに陥るからほこりを防ぐためにフラスコをカバーします。 Büchner またはハーシュ漏斗 (クランプ リングにフラスコは最初スタンド) を使用して、真空ろ過で結晶を分離します。 結晶を Büchner 漏斗、冷たい新鮮な溶媒 (同じ溶媒再結晶に使用) の少量のリンスの結晶に固着する可能性のあるすべての不純物を除去します。 結晶を乾燥するには、漏斗フィルターでそれらを残すし、数分間それらを介して空気を描画します。結晶は、数時間または数日の帽子をかぶらないで済むも乾することができます。効率的な方法には、真空乾燥または乾燥器で配置することがあります。 極性溶媒 以下の極性溶媒 酢酸エチル ヘキサン メタノール 塩化メチレン 水 エタノール トルエン ヘキサン 表 1。一般的な溶剤のペア。

結果

再結晶化の結果の例は図 2に示します。黄色の不純物の原油の化合物の存在が削除され、純粋なプロダクトは、オフホワイトの固体として残っています。核磁気共鳴 (NMR) 分光法による再結晶化合物の純度を確認今ことができます。 または、同様の方法で融点は文学の融点に公開された融点化合物の場合。必要に応じて、純度が高い許容できるまで複数の recrystallizations を実行できます。 図 2。2 a) 粗化合物 (左)、2 b) ろ過 (中央) 前に、の製品と 2 c を再結晶した) 同じ化合物の結晶 (右) 後。

Applications and Summary

再結晶は、混入する可能性があります任意の不純物を除去することによって化合物を浄化の方法です。それは非常に熱い溶媒に溶けるが、同じ溶剤の冷たいバージョンで非常に不溶解性化合物は、最適です。化合物は、室温で固体をある必要があります。再結晶は多くの場合、大量の不純物の除去に効果的であるが、それは十分に高いレベルへの最終的な化合物の純度を発生しません (抽出または列クロマトグラフィー) などその他の方法の後最終的なクリーンアップ手順として使用されます。

再結晶は、化合物の絶対に純粋な完璧な単結晶を作り出すことができる唯一のテクニックです。これらの結晶は、構造および分子の三次元形状を決定する究極の権威である x 線分析に使用できます。これらのケースで、再結晶の結晶格子、不純物の含有せずフォームを許可するように、数ヶ月に数週間にわたって非常にゆっくりと実行を許可します。または非常にゆっくりと、化合物は水溶性 (また antisolvent と呼ばれる) 他の溶剤と混合する溶媒を許可するこの時間の間にできるだけゆっくり蒸発する溶剤を許可する特別なガラス製品です。

製薬業界も多用、再結晶精製詳細カラム ・ クロマトグラフィより簡単にスケール アップするための手段だから。3産業用アプリケーションにおける再結晶の重要性再結晶実験カリキュラムを強調する教育者を引き起こしました。4たとえば、麻薬スタブジン HIV の影響を低減するために使用、通常別に分離された結晶化。5多くの場合、分子研究評価・冷却速度、溶媒の組成などなど、どのような条件下で分離された結晶フォームを理解する必要があるので、複数の異なる結晶構造をあります。これらの異なる結晶形は生物学的に異なって、異なるレートで体に吸収されます。

再結晶の一般的な使用は、氷砂糖を作るのです。氷砂糖は、飽和点にお湯に砂糖を溶解によって行われます。木の棒はソリューションに配置され、ソリューションを冷却し、ゆっくりと蒸発を許可しました。数日後、木の棒中砂糖の大きな結晶が成長しています。

参考文献

  1. Mayo, D. W.; Pike, R. M.; Forbes, D. C., Microscale organic laboratory : with multistep and multiscale syntheses. 5th ed.; J. Wiley & Sons: Hoboken, NJ, p xxi, 681 p (2011).
  2. Armarego, W. L. F.; Chai, C. L. L., Purification of laboratory chemicals. 5th ed.; Butterworth-Heinemann: Amsterdam ; Boston; p xv, 609 p (2003).
  3. Ray, P. C.; Tummanapalli, J. M. C.; Gorantla, S. R., Process for the large scale production of Stavudine. Google Patents: (2011).
  4. Hightower, T. R.; Heeren, J. D., Using a Simulated Industrial Setting for the Development of an Improved Solvent System for the Recrystallization of Benzoic Acid: A Student-Centered Project. Journal of Chemical Education 83 (11), 1663 (2006).
  5. Rohani, S.; Horne, S.; Murthy, K., Control of Product Quality in Batch Crystallization of Pharmaceuticals and Fine Chemicals. Part 1: Design of the Crystallization Process and the Effect of Solvent. Organic Process Research & Development 9 (6), 858-872 (2005).

筆記録

溶剤ガスへの暴露を防ぐためにヒューム フードのすべての手順を実行します。 1. 溶媒を選択します。 三角フラスコに 50 mg のサンプル (N ブロモスクシンイミド) を配置します。 0.5 mL の沸騰の溶媒 (水) を追加します。試料が完全に溶解する場合は、良い結晶溶媒に冷たい溶媒で溶解度が大きすぎます。 サンプルは冷たい溶媒中に溶解しない場合、は、溶媒は沸騰するまでテスト チューブを熱します。 サンプルが完全にこの時点で解散はない場合、は、すべての固体が溶解するまでにもっと沸点溶媒を drop-wise、追加しています。熱い溶媒中で試料を溶かす 3 mL 以上かかる場合、この溶媒の溶解性が良い再結晶溶媒にする低すぎるおそらく。 溶媒の最初の選択肢は良い再結晶溶媒で、他を試してください。動作単一溶剤が見つからない場合、2 つの溶媒系をしようと。 適切な単一溶剤システムを見つけることができない場合、溶媒ペアが必要かもしれません。溶媒のペアを識別するには、いくつかの重要な考慮事項 1 があります) 最初の溶媒は容易に固体を解散すべきです。2) 2 つ目の溶媒では、1st溶剤と混和性であるが、溶質のはるかに低い溶解度する必要があります。 一般的なルールとして「好きなものディゾルブ好き」極性化合物の極性溶媒と非極性化合物に溶解する傾向があることを意味は、しばしばより水溶性の非極性化合物。 一般的な溶剤ペア (表 1) 沸騰の溶媒および室内温度溶媒間の適度な温度差があるので、溶剤が、少なくとも 40 の ° C の沸点であることを確認します。 あることを確認、溶媒沸点以下約 120 ° C 結晶から溶媒の最後の痕跡を削除する方が簡単です。 また溶媒の沸点は化合物形成不水溶性廃油としてではなく、固体の結晶としてので、化合物の融点よりも低いであることを確認します。 不純物がどちらかであることを確認 (彼らは化合物を分解したら、ホット フィルターできます) ので熱い溶媒に不溶または (し、全体のプロセスの中に溶解したまま) 冷たい溶媒に不溶。 2. 熱い溶媒中でサンプルの溶解 三角フラスコで再結晶する化合物を配置します。これは、傾斜の側面トラップ溶剤蒸気を助けるおよび蒸発の速度が遅いので、ビーカーよりもより良い選択です。 別のエルレンマイヤー フラスコに溶媒 (水) を配置し、沸騰のチップやスムーズに沸騰を維持する攪拌棒を追加します。ホット プレートの上に沸騰にそれを熱する。 化合物が完全に溶けるまで、各付加の後で旋回、小さな部分に化合物を含有する室温でフラスコに熱い溶媒を追加します。 溶解処理中にソリューションを保持でホットすべての回でも、ホット プレートの上に休憩します。必要 – 以上より熱い溶媒を追加しない試料を溶かすだけで十分。 固体の部分が解消しない場合は熱い溶媒を追加すると後でさえもそうだ非常に不溶解性の不純物の存在のため。この場合、溶媒を追加するを停止し、続行する前に熱いろ過を行います。 熱いろ過を実行するためにフルーティングを施された円錐形フィルター紙を折るし、ガラスの茎のない漏斗に入れます。 手順で蒸発を許可する高温の溶液に熱い溶媒の 10-20% 過剰を追加します。 紙を溶液を注ぐ。結晶開始フォーム プロセス中にいつでも場合、は、それらを解消する温かみのある溶媒の小さな部分を追加します。 3. 冷却ソリューション フラスコは行われません熱を離れて早すぎる、または卓上セット ペーパー タオルなど表面に溶存化合物を含有を設定します。 軽く冷やす蒸発を防ぐために、ソリューションに陥るからほこりを防ぐためにフラスコをカバーします。 それは部屋の温度に冷却するまでフラスコを妨げられていない残します。 結晶を形成している、一度結晶の最大量が得られることを確保するための氷浴にソリューションを配置します。ソリューションは、30 分間氷浴で妨げられていない 1 h に委ねられるべきまたは化合物表示が完全に解決から結晶化するまで。 それが中を掻くことによって誘起すること結晶形成を明らかにしない場合ガラス棒または同じ化合物の小さな種結晶を追加することによってフラスコの壁。 これはまだ動作するように失敗した場合、あまりにも多くの溶媒は使用でしょう。ソリューションを再加熱、ボイルオフガス、溶媒のいくつかを許可し、それを冷却します。 4. 分離と水晶の乾燥 冷たいフラスコ、ベンチトップに新たに形成された結晶を含むを設定します。 軽く蒸発を防ぐために、ソリューションに陥るからほこりを防ぐためにフラスコをカバーします。 Büchner またはハーシュ漏斗 (クランプ リングにフラスコは最初スタンド) を使用して、真空ろ過で結晶を分離します。 結晶を Büchner 漏斗、冷たい新鮮な溶媒 (同じ溶媒再結晶に使用) の少量のリンスの結晶に固着する可能性のあるすべての不純物を除去します。 結晶を乾燥するには、漏斗フィルターでそれらを残すし、数分間それらを介して空気を描画します。結晶は、数時間または数日の帽子をかぶらないで済むも乾することができます。効率的な方法には、真空乾燥または乾燥器で配置することがあります。 極性溶媒 以下の極性溶媒 酢酸エチル ヘキサン メタノール 塩化メチレン 水 エタノール トルエン ヘキサン 表 1。一般的な溶剤のペア。