ソース: タマラ ・ m ・力、化学のテキサス A & M 大学
今日の現代世界には、大量のエネルギーが必要です。一方、我々 は石炭や石油などの化石燃料からのエネルギーを活用、これらのソースが再生不可能なしたがって供給は限られています。私たちのグローバルなライフ スタイルを維持するために我々 は、再生可能エネルギー源からエネルギーを抽出する必要があります。最も有望な再生可能エネルギー源、豊かさの面では、完全に私たちの惑星上の何回も燃料に十分すぎるほどの太陽エネルギーは、太陽です。
太陽からエネルギーを抽出するにはどのように我々?自然はそれを把握する最初: 光合成は、植物が水と二酸化炭素を炭水化物と酸素に変換という過程。このプロセスは植物の葉で発生し、葉のグリーン色のクロロフィル顔料に依存しています。これは化学反応を駆動するエネルギーを吸収され、太陽光からエネルギーを吸収するこれらの着色分子です。
1839 年には、エドモンド ベクレル、19 歳フランス物理学者彼の父の研究室での実験は、最初の太陽電池を作成されます。彼は電圧を生成した白金電極に接続され、現在は銀の塩化物の酸性溶液を照らされました。1は、多くの発見や進歩は後半 19回前半の 20th世紀で行われた、最初の実用的な太陽電池は、ベル研究所によって建てられた 1954 年にだけだった。1950 年代以降、太陽電池は、衛星の電源に使用されました。2
太陽電池は、電流を作成する光を利用する電気機器です。このビデオは、準備と電池、色素増感太陽電池 (開発) のようなの 1 つのタイプのテストを示します。最初にカリフォルニア大学バークレー校でブライアン ・ オリーガンとマイケル Grätzel によって発明された Grätzel は、エコール連邦工科ローザンヌ スイス連邦共和国、1991 年に最初の非常に効率的な開発で最高潮に達するでこの仕事を追求しました。3植物のようなこれらの太陽電池は、太陽からハーネス エネルギーを支援するのに染料を使用します。
バンド理論:
2 つの軌道が形成される分子軌道を形成する 2 つの原子が一緒に来て、1 つの結合、他の反対称性を持つ。4これらはエネルギー量で区切られます。時n原子は分子軌道としてnが固体、分子軌道を形成する一緒に来る。Nが大きいとき、エネルギーの間隔が狭い軌道数が多い同様に。結果は同じようなエネルギー (図 1) の軌道のバンドです。これらのバンドに原子から電子が存在します。バランス バンドは電子が設定された最も高いエネルギー バンドです。それは分子の最高占有分子軌道 (ホモ) に似ています。伝導帯は、電子では空、最低非占有分子軌道 (LUMO) の分子に似ているが最低のバンドです。バンド ギャップは、これらの 2 つのバンド間のエネルギー差です。
バンド ギャップが大きい、固体材料が絶縁体: 電子は材料 (図 1) 自由に流れることができません。対照的に、導体、valance 伝導バンド ギャップがぼやけています。金属などの導体に電圧を適用する価電子帯、伝導帯の電子のいくつかが発生します。これらの励起電子が自由に動きます。電子が自由に動くも肯定的な穴を残します。実際には、穴が移動しない、肯定的な穴を埋めるための電子の移動ではなく。導体温度上昇として分子振動増加、電子の流れを妨害し、導電率を減少させます。
半導体 0 ケルビンで絶縁体として動作しますが、温度の上昇につれて (図 1) 導体になるものであります。これは、原子価そして伝導バンド間のバンド ギャップのエネルギー-は小さいので、熱エネルギーは十分で伝導帯に電子を励起します。典型的な真性半導体は、シリコンとゲルマニウムに含まれます。
図 1.絶縁体、半導体、およびコンダクターのバンド図。ホワイト バンドは空、影付きの帯が電子で満ちています。離散穴が白球で示されている間、離散電子は赤い球で示されます。
太陽光発電の効果:
光が半導体に当たる、価電子帯から伝導帯に電子が励起するそれ。この電子組み換えることも可能、穴とそれ電子のない純流れで結果残した。または、半導体、回路、周りを移動して回路のもう一方の端の穴と再結合します。日光への暴露から作成された電子のこの流れは、光起電力効果と呼ばれます。電気を生成する目的とこの後者のシナリオと、従ってシステムは再結合の上これを支持する設計必要があります。
これを支持する 1 つの方法は、p-n 接合、すなわちn と p にドープされた半導体の間の接合を持つ細胞を設計することです。これらは半導体原子のいくつかがされているという、置換される隣接する周期表の原子。N ドープ半導体、これらはより多くの電子を持つ原子に置き換えられます、p ドープ半導体、これらは少数の電子を持つ原子に置き換えられます。「伝統的な」シリコン系太陽電池を作るこの方法の使用します。
太陽電池の新たな種類は様々、Grätzel セルと呼ばれます。5これらは有望な半透明、しているし、コストが大幅に少ないという点で。これらの太陽電池はまだ作る半導体、しかし、それは太陽からの光を吸収するために使用される染料。
開発のコンポーネント:
図 2に示すようの開発に多くのコンポーネントがあります。
染料
高い信頼性は、光起電力効果を促進するため、染料を使用します。色素分子は、結合軌道から反結合軌道に電子を促進、光を吸収します。この励起電子ことができます、バック ドロップ結合軌道、電子の流れのない結果に。または、半導体、開発の生産性の高い経路に注入することができます。これは、回路を完了する必要があります穴の背後に残します。生産性の高い経路の色素の励起状態の電子のエネルギーは、半導体の伝導バンドよりも大きくなければなりません。染料また電池の効率を改善するために太陽光のスペクトルの多くを吸収する必要があります。典型的な染料はルテニウム (Ru)-ベース、およびそれ故にこの金属が非常に経済的ではないと、開発を制限します。
この実験では、ブラックベリーやラズベリーなど、いくつかの果実は、天然色素 (アントシアニン) が利用されます。アントシアニン色素の構造のいくつか特色にする必要があります = TiIVO2表面 (図 3) にバインドする色素は、O または – オハイオ州のグループ。6
半導体
半導体の伝導帯に励起電子が、流れます。この実験で使用する半導体は、TiO2です。
アノード
この場合、SnO2は、陽極に半導体から電子の流れ-ガラスをコーティングします。SnO2を絶縁体になるガラスの導電面が可能です。
カソード
負荷を通過した電子は同様に SnO2で覆われている陰極に来る。陰極はグラファイト、調停の酸化還元反応を促進することをこの場合、触媒がさらに覆われています。
調停者
私に陰極から電子を渡す3–、それを減らすに–。この減らされた分子は、回路を完了、色素分子に残された穴に電子を寄付できます。このプロセスは私に3–を再生成します。間違い太陽セルまたはセルを作り出すことができる最大電圧の開回路電位に対応する潜在的な3–– /I セルとフェルミ レベル。
このビデオでは、高い信頼性を用意し、その性能評価を行います。
図 2 。開発の模式図。日光は、染料の反結合軌道に電子を発生させる色素によって吸収されます。この電子の穴を残して、TiO2伝導帯に移動します。電子回路を一周、負荷を渡し、私に戻って酸化を私に私は–、3–を減らすために使用は3–電子としての穴を満たす染料します。
図 3.いくつかの果実のアントシアニン色素は、TiO2表面にキレートします。
1. TiO2ペーストの準備
2. ティオ2ガラスの成膜
図 4.TiO2ガラスの蒸着。
3. 染色染料による TiO2映画
4. カウンター電極を準備します。
5. 太陽電池を組み立てる
6. 電池の性能の測定
注: 理想的には、これらの測定値は、外で実行します。しかし、天候はないがハロゲン ランプを使用して実行できます。すべての測定は、同一条件の下で実行されるので、セルのない動きでされるべきであります。
図 5.回路図開回路電位と短絡電流 (左、6.3、6.4 の手順)、測定して – V 曲線 (右) を記録します。
色素増感太陽電池は、従来の半導体太陽光発電に有望な代替手段で近年商業となっています。
色素細胞は、一意に低照度下でのシリコン太陽電池よりも約 50% 以上電源を産する高温と高い光入射角でも一貫した電源を生成することによって彼らの低い効率を補正します。彼らはかなり簡単に製造し、染料として自然豊かな植物ベースの顔料を使用することができます。このビデオは、色素増感太陽電池の動作を示しています、植物色素を使用してラボでテスト サンプルを作成するための基本手順を示します、いくつかのアプリケーションについて説明します。
すべての太陽電池セルは、電流を生成する電子のエネルギーを寄付する光の能力に依存します。
単一原子では、電子は離散的エネルギー準位に限定されます。しかし、彼らは光の光子を吸収する、電子は一時的に下位レベルに穴を残してより高いエネルギー準位に登る。
2 つの原子は近接するとき、彼らは互いの電子を混乱させます。これは電子が占有することができます新たなエネルギー レベルを作成します。別の原子を追加するより多くのエネルギーのフォーム、最終的に緻密なエネルギー バンド合体レベルします。
半導体の非占有準位は占有レベル低エネルギー価電子帯を形成しながら高エネルギーの伝導バンドを形成します。エネルギー差は「バンド ギャップ エネルギー」として知られているバンド ギャップ エネルギーを持つ光子が電子を打つ場合、穴を残して、電子を推進します。電子と正孔の両方行うことができる原子から彼らを再結合まで。
我々 は半導体が光エネルギーを吸収する方法を見てきた、私たちが色素増感太陽電池ではこの現象を利用できる方法を見てみましょう。
シリコン太陽電池とは異なりは、色素増感太陽電池は、組換えの率を下げるための電流伝送の光吸収のプロセスを区切ります。
セルには、2 つの電極、電解質、半導体層増感剤色素が含まれています。半導体はアナターゼ型酸化チタンの2など、安定した誘電体です。電解質は通常有機ヨウ化物、カウンター電極腐食、耐熱材料、しばしば白金や炭素。
半導体メソ多孔体であり、吸着した色素の単分子層を含んでいます。色素電子は光子によって励起されると、すぐに半導体の伝導帯に注入されます。
半導体、電子、光電極を回路に順番を伝えています。使用済み電解質を低下、カウンター電極を介して電子返しますサイクルを完了します。
効果的な染料は全体の可視スペクトルに対応します。初期の染料には、有機のルテニウム錯体が含まれています。これらは、赤外線に高い変換を提供するが、高価で生産することは困難。カロテノイドとアントシアニンなどの植物ベースの感光性色素は、少ない効率的なより豊富で実用的です。
これらの原則であります。今研究室で小操作手順を見てみましょう。
ここに示す手順により、急速にする色素増感太陽電池を作製し、共通の前駆体との材料のみを使用して、テストします。
アナターゼ型酸化チタン2粉末 6 g を乳鉢に追加することによって開始します。追加 2-3 mL、酢、しこりを分割する懸濁液を挽く。9 mL の合計が追加されるまで繰り返し 1 mL 単位で挽く、酢を追加します。ペーストは、最終的に統一する必要があります。
次に、軽く 1 mL の蒸留水に皿の石鹸の一滴を混合することによって界面活性剤水溶液を生成します。優しく泡を生成しないように注意して、ペースト状に界面活性剤水溶液を混ぜます。平衡に懸濁液を許可します。
低リント ワイプを使用してきれいな 2 つの SnO2コーティング導電性ガラス スライドをエタノールに浸した。マルチメータを使用して、その導電性両側を見つけます。導電性側 10-30 Ω の抵抗が必要です。
5-8 mm がマスクされて、気泡がないように、ベンチを導電性片側とダウン、その他導電性側にスライドをテープします。ガラス棒を使用すると、導電性側の上端間でペーストの細い均一な線を適用します。テープを外し、乾いた映画をみましょう。
ホット プレート、導電性の側にそれを置くことによって、スライドを乾燥します。映画は最初紫茶色に暗くなるし、白きます。これが発生すると、ホット プレート、上にスライドを維持するオフにします。部屋の温度に冷却して後、は、フィルムの表面領域を記録します。
カウンター電極の準備、2 番目のスライドの導電性ガラスをきれいに。導電性の側に炭素触媒を適用されます。ライターの炎でピンセットで導電性の側面を保持します。すす、ピンセットで 30 秒以上方向スライドの収集し同じファッションですすで残りのコーナーをカバー、スライド全体が覆われていることを確認をしましょう。
今では電極が用意されて、色素増感太陽電池を建設しよう。
ヘラを使用すると、いくつかのラズベリー、ブラックベリーやビーカーにチェリーをつぶします。蒸留水を数滴を追加する必要に応じて、コーヒー フィルターを使用してシャーレにソリューションをフィルター処理します。
ピンセットを使用して、ペトリ皿の光電極、導電面を下、フィルムを傷をつけないように世話を置きます。染色が完了したら、慎重にスライドを撤回し、白い斑点が表示されていないことを確認してください。スライドをエタノールでリンス、しみ、乾燥。
スライドの間のオフセットを維持する映画にダウン カウンター電極面を配置します。バインダー クリップをスライドの端に取り付けます。縁に沿って電解液を数滴を置き、バインダー クリップを少し開いて、映画以上に浸透することができます。セルは、操作の準備ができました。
ハロゲン ランプの下で電池の性能を測定するための準備します。酸素及び水素、ハロゲン ランプを直面しているのでセルに合わせます。開回路電位を測定するマルチメータを使用し、短絡電流。
次に、セルを 500 Ω ポテンショメータ テキスト プロトコルに示す回路を作成するために接続します。順番にポテンショメータの抵抗増加し、電圧と電流を測定するマルチメータを使用します。
収集されたデータを使用して、太陽電池と太陽電池効率の太陽エネルギーの変換を記述する電流-電圧曲線を作成します。
曲線と x 軸の交点は、無通電状態での電圧は、開放電圧と呼ばれます。0 V 時の最大電流の点は、曲線 y 軸と交差する位置グラフに表示されます。
最大電力点 (MPP) は、曲線の「膝」で発生し、電圧および太陽電池の最適な操作の現在の条件を提供します。電流-電圧曲線の MPP は、別の太陽電池の性能を比較する手段を提供します。この実験で測定開回路電圧は、0.5 ボルトの値と 1-2 mA/cm2の短絡の可能性に達することができます。
色素増感太陽電池はニッチでは、貴重なとこのビデオでアプローチ新規色素を持つ細胞の迅速なプロトタイプ作成を可能に。
色素増感太陽電池は、低照度下でハイパワーを収率ので彼ら、「光捕集、「屋内光パワー センサー、ID タグ、データ送信機、およびより多くの再利用に役立ちます。これを実現する 1 つの方法は、電子が伝導帯にアップ コンバートをできるから、バンド ギャップ内のエネルギー レベルを導入した色素を開発することによってです。経験的に、これは 2 つの低エネルギー吸収を持つ単一の高エネルギー吸収を置き換えることによって近赤外波長の光子-電子変換を倍増しています。
色素細胞は、汚染を最小限に抑えるため、出力を維持するために電極に TiO2中空からす微小球を追加する場合、太陽光発電の窓の生産のために使用されます。このため、高性能電極のナノファイバーを生成する電界に TiO2のスラリーを注入するゆっくりと、エレクトロスピニング法, などの手頃な価格の製造技術を使用できます。別の加工技術はインク ジェット印刷です。これは、電極をガラス基板上に 3.5% の効率で細胞を降伏預金に使用されています。
ゼウスの色素増感太陽電池の概要を見てきただけ。色素細胞の操作、安価、ラボ、およびいくつかのアプリケーションでそれらを生成するための手順に精通している必要がありますできます。いつも見てくれてありがとう!
手順 6.5.3-6.5.4 で収集された各データ ポイントに電流密度 (mA/cm2) と電力密度 (mW/cm2) を計算します。電流密度を計算するには、手順 2.7 で決定されたフィルムの表面の面積によって電流を割ります。電力密度を計算するには、電流密度により電圧を掛けます。6.3、6.4, と 6.5.3-6.5.4 の手順でデータが収集された電圧 (mV) の電流 (mA) をプロットします。すべてのデータのボルトと電流密度をプロットします。これは曲線の「膝」に近いはずです。(撮影 800 1,000 W/m2)、受信の太陽光発電と 100% を乗算することによって、最大電力 (mW/cm2) で割って電気エネルギー変換効率に日光を決定します。
データの分析、- V カーブの準備は、電池の性能を比較する手段として太陽電池の文献で標準です。開回路電圧の測定は、0.3、0.5 V の間でなければなりませんし、1-2 mA/cm2の短絡の可能性を取得する必要があります。
このビデオは、準備と簡単な開発の分析を示した。
太陽電池より一般的になっているし、彼らの演奏を事前に行われている多くの研究があります。シリコン半導体に基づいている従来の太陽電池は、宇宙と地球上に使用されている太陽電池パネルを作るに使用されます。デンバー国際空港を作るコロラド州の日当たりの良い気候の使用し、4 つの太陽電池アレイは、空港のエネルギーの 6% を提供する必要があります。
光電は 15% まで効率で動作7伝統的な低コストの商業シリコン パネルの 14-17% の効率と比較して。光電の営業効率は、競争力のある、(Ru 色素) など材料の高コストは大規模なアプリケーションの問題です。おそらくを活かしての最大の欠点は温度変化に敏感な液体の電解質を使用。液体電解質は低温、それにより電力生産を停止および/または太陽電池パネルの構造的損傷の結果で固定できます。高温液体の電解質が広がり、やりがいのあるパネルをシールになります。
Dye-sensitized solar cells are a promising alternative to conventional semiconductor photovoltaics and have become commercially viable in recent years.
Dye-sensitized cells compensate for their lower efficiency by uniquely producing consistent power even at high temperatures, and high photon incidence angles, yielding nearly 50% more power than silicon solar cells under low light. They are considerably easier to manufacture and can use natural, abundant plant-based pigments as dyes. This video illustrates the operation of dye-sensitized solar cells, demonstrates an elementary procedure for creating test samples in the lab using plant pigments, and discusses a few applications.
All solar cells rely on the ability of light to donate energy to electrons to produce electric currents.
In single atoms, electrons are confined to discrete energy levels. However, when they absorb photons of light, the electrons temporarily ascend to higher energy levels, leaving a hole in the lower level.
When two atoms are in proximity, they perturb each other’s electrons. This creates new energy levels the electrons can occupy. As additional atoms are added, more energy levels form, ultimately coalescing into dense energy bands.
In semiconductors, the unoccupied energy levels form a high-energy conduction band, while occupied levels form a low-energy valence band. The energy difference is known as the “bandgap energy.” If a photon having the bandgap energy strikes an electron, the electron will be promoted, leaving a hole behind. Both electron and hole may be conducted from atom to atom until they recombine.
Now that we’ve seen how semiconductors absorb light energy, let’s see how we can harness this phenomenon in a dye-sensitized solar cell.
Unlike silicon solar cells, dye-sensitized solar cells separate the process of light absorption from that of current transmission, to lower the rate of recombination.
The cell contains a sensitizer dye, a semiconductor layer, an electrolyte, and two electrodes. The semiconductor is a stable dielectric, such as anatase TiO2. The electrolyte is typically an organic iodide, and the counter-electrode a corrosion- and heat-resistant material, often platinum or carbon.
The semiconductor is mesoporous and contains a monolayer of adsorbed dye. When a dye electron is excited by a photon, it is immediately injected into the semiconductor’s conduction band.
The semiconductor conveys the electron to the photoelectrode, and in turn to the circuit. The electron returns via the counter-electrode, where the spent electrolyte is reduced, completing the cycle.
Effective dyes respond to the entire visible spectrum. Early dyes included organic ruthenium complexes. These provide high conversion into the infrared, but are expensive and difficult to produce. Plant-based photosensitive pigments, such as carotenoids and anthocyanins, are more abundant and practical, albeit less efficient.
Those are the principles. Now let’s examine an elementary operating procedure in the lab.
The procedure demonstrated here allows dye-sensitized solar cells to be rapidly fabricated and tested, using only common precursors and laboratory materials.
Begin by adding 6 g of anatase TiO2 powder to a mortar. Add 2- 3 mL of vinegar, and grind the suspension to break up lumps. Iteratively add vinegar in 1 mL increments and grind, until a total of 9 mL have been added. The paste should ultimately be uniform.
Next, produce a surfactant solution by gently mixing one drop of dish soap with 1 mL of distilled water. Gently mix the surfactant solution into the paste, being careful not to produce bubbles. Allow the suspension to equilibrate
Clean two SnO2 coated conductive glass slides using a low lint wipe soaked in ethanol. Use a multimeter to find their conductive sides. The conductive side should have a resistance of 10-30 Ω.
Tape the slides to the bench, one conductive side up and the other conductive side down, such that 5-8 mm are masked and there are no air bubbles. Using a glass rod, apply a thin, uniform line of paste across the top edge of the conductive side. Let the film dry slightly, and remove the tape.
Dry the slide by placing it on a hot plate, conductive side up. The film will first darken to a purple-brown and then whiten. When this occurs, switch off the hot plate, keeping the slide on top. After it has cooled to room temperature, record the surface area of the film.
To prepare the counter-electrode, clean a second conductive glass slide. Apply the carbon catalyst to the conductive side. Hold the conductive side with tweezers over a lighter flame. Let the soot collect for no more than 30 sec. Reorient the slide with the tweezers and cover the remaining corner with soot in the same fashion, ensure the entire slide is covered.
Now that the electrodes have been prepared, let’s construct the dye-sensitized solar cell.
Use a spatula to crush a few raspberries, blackberries or cherries in a beaker. Then filter the solution into a Petri dish using a coffee filter, adding a few drops of distilled water if necessary.
Using tweezers, place the photoelectrode in the Petri dish, conductive side down, taking care not to scratch off the film. When staining is complete, carefully withdraw the slide and check that no white patches are visible. Rinse the slide in ethanol and blot dry.
Place the counter electrode face down on the film, maintaining an offset between the slides. Attach binder clips to the slide edges. Place a few drops of electrolyte along the edge, and let it seep over the film by slightly opening the binder clips. The cell is now ready for operation.
Prepare to measure the cell performance under a halogen lamp. Orient the cell so the photoelectrode is facing halogen lamp. Use a multimeter to measure the open circuit potential and the short-circuit current.
Next, connect the cell to a 500 Ω potentiometer to create the circuit shown in the text protocol. Sequentially increase the resistance through the potentiometer, and use the multimeter to measure the voltage and current.
The data collected is used to create a current-voltage curve, which describes the solar energy conversion of the solar cell and its solar efficiency.
The point where the curve crosses the x-axis is called the open circuit voltage, which is the maximum voltage at zero current. The point of maximum current at 0 V appears on the graph where the curve crosses the y-axis.
The maximum power point (MPP) occurs at the “knee” of the curve and provides the voltage and current conditions for ideal operation of the solar cell. The MPP of current-voltage curves provides a means to compare the performance of different solar cells. The open-circuit voltage measured in this experiment can reach values of 0.5 volts and a short circuit potential of 1-2 mA/cm2 .
Dye-sensitized solar cells are valuable in niche applications, and the approach in this video allows for rapid prototyping of cells with novel dyes.
Since dye-sensitized solar cells yield high power under low light, they are useful for “light harvesting,” the reuse of indoor light to power sensors, ID tags, data transmitters, and more. One way of accomplishing this is by developing dyes that introduce energy levels within the bandgap, from which electrons can upconvert into the conduction band. Empirically, this has doubled photon-to-electron conversion in near-infrared wavelengths by replacing a single high-energy absorption with two lower-energy absorptions.
Dye-sensitized cells are used for the production of photovoltaic windows, where TiO2 hollow glass microspheres are added to the electrodes to minimize pollution and to maintain the output. For this affordable manufacturing techniques, such as electrospinning, can be used, where a TiO2 slurry is slowly injected into an electric field to produce nanofibers for high-performance electrodes. Another fabrication technique is inkjet printing. This has been used to deposit electrodes on glass substrates, yielding cells with efficiencies of 3.5%.
You’ve just watched JoVE’s introduction to dye-sensitized solar cells. You should now be familiar with the operation of dye-sensitized cells, a procedure for inexpensively generating them in the lab, and some applications. As always, thanks for watching!
Related Videos
Inorganic Chemistry
31.6K 閲覧数
Inorganic Chemistry
18.6K 閲覧数
Inorganic Chemistry
54.5K 閲覧数
Inorganic Chemistry
68.4K 閲覧数
Inorganic Chemistry
104.3K 閲覧数
Inorganic Chemistry
25.4K 閲覧数
Inorganic Chemistry
22.0K 閲覧数
Inorganic Chemistry
38.8K 閲覧数
Inorganic Chemistry
79.4K 閲覧数
Inorganic Chemistry
45.1K 閲覧数
Inorganic Chemistry
35.3K 閲覧数
Inorganic Chemistry
15.3K 閲覧数
Inorganic Chemistry
15.8K 閲覧数
Inorganic Chemistry
51.6K 閲覧数
Inorganic Chemistry
16.7K 閲覧数