トランスフェクションとは、DNAや二本鎖RNAなどの遺伝物質を哺乳動物細胞に導入する手法です。DNA導入によりタンパク質の発現や合成をその細胞自身に誘導させることができます。それに対しRNA導入は翻訳を阻害するため、特異的なタンパク質の合成を抑制することができます。導入されたRNAの働き場所が細胞質である一方、DNAは核まで輸送させなければトランスフェクションが成功しません。DNAは短時間一過性に発現させることも、ゲノムDNAに組み込ませ細胞分裂の度に細胞から細胞へ受け渡すこともできます。
このビデオでは、化学的物質を用いたトランスフェクション法や荷電脂質、ポリマー、リン酸カルシウムなどの一般的に使用される試薬を紹介しています。トランスフェクション用の細胞の準備方法からトランスフェクション効果の分析方法までの各ステップを説明しています。さらにビデオジャーナルの応用の項では、エレクトロポレーション法、哺乳動物細胞に核酸を導入する代替方法として、遺伝子銃を用いたトランスフェクション法を紹介しています。また、より高度な手法である干渉RNAとDNAの共導入法(コトランスフェクション法)も紹介しています。この手法により、自然発生的に分泌されるタンパク質を抑制し、同時に同じ細胞内で突然変異体を生成することが可能です。
トランスフェクションとは、DNAや二本鎖RNAなどの遺伝物質を哺乳動物細胞に導入する手法です。DNA導入によりタンパク質の発現や合成をその細胞自身に誘導させることができます。それに対し二本鎖RNAの導入は、翻訳を阻害しタンパク質の合成を停止させます。この有力な手法は、遺伝子の機能と発現、タンパク質の機能、遺伝子変異などの研究に利用されます。
すべての細胞に使用可能なトランスフェクション試薬や方法はありません。しかしここ数十年で、その多くは幅広い種類の細胞に適用できるよう改善されてきました。方法は大きく分けて2種類、化学的手法と物理的手法があります。
このビデオでは、近年頻繁に利用される化学物質を用いた輸送システムにフォーカスしていきます。脂質をベースとした手法、リン酸カルシウム法、陽イオン性ポリマーを用いた方法を紹介します。
すべての化学的手法で基本原理はほぼ同じです。どの手法でもプラスに帯電した担体分子を使用し、核酸を吸着させ細胞内輸送させます。これら担体分子は、マイナスに帯電した細胞膜を通過できるため細胞内部に核酸を輸送することができます。
脂質を用いた手法では、陽イオン性脂質から形成されるリポソームに核酸を結合させた複合体を。またリン酸カルシウム法では、プラスに帯電させたリン酸カルシウムと核酸の凝集体を利用します。さらにポリエチレンイミンなど陽イオン性ポリマーをDNAと凝集させた正電荷粒子も利用できます。
化学的手法の次のステップは、プラスに帯電した複合体とマイナスに帯電した細胞膜の静電相互作用による吸着です。
その後、複合体はエンドサイトーシスによってエンドソームという膜結合型の小胞を介し細胞内に取り込まれます。
詳細なメカニズムは不明ですが、核酸は細胞内に取り込まれるとエンドソームから遊離されます。 その後細胞質に輸送され、最終的には核に入りmRNAを合成しタンパク質を生成します。 細胞質は低分子干渉RNAすなわちsiRNAの活躍の場であり、細胞のタンパク質合成機構を阻害し、生成を抑制します。
導入されたDNAは恒久的にも一時的にも存在可能です。安定型導入は、DNAがゲノムに組み込まれることで、細胞分裂後も存在し続けます。一過性導入では、DNAがゲノムに組み込まれず24から96時間のうちに標的となるタンパク質はなくなってしまいます。
通常DNAトランスフェクションの効果は挿入遺伝子にレポーターをつけて確認します。このシステムにより、緑色蛍光タンパク質のようなレポータータンパク質を直接観察することや、ルシフェラーゼなどの酵素活性を比色法により定量できます。
siRNAサイレンシングは、標的タンパク質の発現レベルをイムノブロッティングで評価します。成功していれば細胞内の標的タンパク質の発現は減少しているはずです。一方、GAPDHなどハウスキーピング遺伝子の発現は変わりません。
トランスフェクションを最も効率的に実行できるのは、細胞の対数増殖期で40%から80%コンフルエントな状態になったときです。そのため前もって細胞数をきちんとカウントし、トランスフェクション時に適量になるよう濃度を考えマルチウェルプレートに播種します。
次に、化学試薬と核酸を混合し、複合体を形成するまで待ちます。各化学的手法に合わせて、成分濃度を調製する必要があります。
核酸と試薬の複合体を培養細胞に加え、複合体が十分に細胞にくっつき細胞内移行ができるよう、通常一晩インキュベートします。24時間後新鮮な培地に移します。
トランスフェクションは広範囲で利用されます。例えば、共導入法を用いてミスセンス変異の細胞内タンパク質機能への影響を研究できます。 ここでは、内因性BRCA1の発現を抑制するためにRNAiをHeLa細胞に導入しています。これによりGFP陽性細胞は減少します。それと同時にBRCA1変異タンパク質も導入し、細胞でその変異タンパク質を発現させます。もし変異タンパク質がしっかり機能すれば、GFP陽性細胞は増加し、 逆に機能しなければ、陽性細胞は少ないままです。
ここでは化学的手法の代わりに、遺伝子銃を使って培養細胞にDNAを混合した金粒子を導入しています。 細胞とDNAをコーティングした粒子が細胞質内で結合し、トランスフェクションが行われます。
他にも、エレクトロポレーション法があります。エレクトロポレーション法では、電流により細胞膜に穴をあけ、それが修復されるまでの短い時間DNAやRNAを細胞内に輸送できます。ここでは、ピンセット型の電極をマウスの脳にあて、短パルスを与えることでトランスフェクションを誘発でき、青い溶液内にRNAi分子を導入しています。これにより発達過程にある大脳皮質での遺伝子サイレンシングの効果が観察できます。
ここまでJoVEトランスフェクション編をご覧いただきありがとうございました。
Transfection is the process of inserting genetic material, such as DNA and double stranded RNA, into mammalian cells. The insertion of DNA enables the expression, or production, of proteins using the cells own machinery. Whereas insertion of double-stranded RNA is used to shut down the production of a specific protein by stopping translation. This powerful tool has allowed researchers better study gene function and expression, protein function, and genetic mutations.
No single transfection reagent or method works for all cell types. Fortunately, many methods and reagents have been developed in the past few decades to facilitate transfection of a wide variety of cells. These methods can be separated into two main groups: chemical and physical transfections.
In this video, we will focus on the different chemical delivery systems, as they have become increasingly common in recent years. These methods include lipid-based approaches, calcium phosphate mediated transfection, and the use of cationic polymers to name a few.
The underlying principle of all the chemical transfection methods are similar. They all make use positively charged carrier molecules that complex with nucleic acids to package them for cellular delivery. These carrier molecules overcome the negative charge of the cell-membrane barrier which allows them to pass through the membrane to deliver their contents.
In lipid transfection, cationic lipids form a liposome which then combines with nucleic acids to form a “transfection complex”. Whereas calcium phosphate simply condenses the DNA and gives it a net positive charge. Additionally, cationic polymers such as polyetheleneimine condense the DNA into positively charged particles.
The next step in chemical mediated transfection is attachment of the positively charged complexes to the negatively charged cell membrane through simple electrostatic attraction.
Then, the complex enters the cell via endocytosis – a process by which molecules enter the cell via membrane-bound vesicles called endosomes.
Once inside the cell, the nucleic acids must escape from the endosome by a process that is still unknown. Once outside the endosome, the nucleic acids will find themselves in the cell’s cytoplasm and then ultimately the nucleus, where the cell’s machinery is able to make mRNA and then protein from it. The cytoplasm is the site of action for the small interfering RNA, or siRNA where it reduces the production of protein by interfering with a part of the cell’s protein producing machinery.
Transfected DNA can exist either stably or transiently. Stable transfections occur when transfected DNA is introduced into the genome and therefore persists as the cell divides. Transient transfections occur where the DNA is not incorporated into the genome and expression of the coded protein is lost during a span of about 24-96 hours.
The efficiency of DNA transfection is typically measured through reporter systems that are tethered to the inserted gene. These are systems that can be easily detected either by directly observing the reporter protein itself, such as in the case of green fluorescent protein, or by its measuring its enzymatic activity using a colorimetric assay, as in the case of a luciferase enzyme reporter. Stable DNA transfection is best measured by genomic analysis such as RT-PCR.
To measure the success of siRNA silencing, the targeted protein levels in each sample can be determined by Immunoblot. Successful siRNA transfection should decrease the expression of the target protein within the cells while levels of the housekeeping gene, GAPDH, remain stable.
To maximize transfection efficiency, cells should be maintained in log phase growth and be between 40 and 80% confluent, at the time of transfection. In order to accomplish this, cells in culture should be harvested the day before… counted… and seeded into a multi-well plate at a concentration that will yield the correct level of confluencey at the time of transfection.
Next, the chemical reagents and nucleic acids are mixed and given time to form the nucleic acid-reagent complexes. For each chemical delivery system the specific concentrations of each component must be optimized.
The nucleic acid-reagent complexes are then added to the plated cells and incubated often overnight to give plenty of time for the complexes to attach to the cells and mediate transfection. After 24 hours, the media should be removed and replaced with fresh culture media.
Many variations and applications of transfection exist. Co-transfection can allow a researcher to study the effect of missense mutations on the function of cellular proteins. Here, RNAi was transfected into HeLa cells in order to down-regulate the endogenous BRCA1 protein, which causes a reduction in the number of GFP positive cells. At the same time a mutant BRCA1 protein was also transfected and produced by the cell. If the mutated protein was fully functional it caused a recovery in the number of GFP positive cells, but if the mutation negatively affected function, then the number of GFP positive cells stayed low.
As an alternative to chemical transfection methods, a researcher, shown here, uses a gene gun to fire gold particles laced with DNA at cells in culture. Cells that end up with the small DNA coated bullets within their cytoplasm have a good chance for becoming transfected.
Another alternative method for transfection is electroporation. Electroporation is the use of electrical current to damage the cell’s membrane allowing DNA or RNA to enter the cell for a short time before the cells have time to repair. Here, tweezer electrodes are placed around a mouse brain and short pulses of electricity are passed through the brain to initiate ex-vivo transfection of the injected RNAi molecules within the blue solution. The effects of gene silencing on the structure of the developing cortex is then observed.
You’ve just watched JoVE’s video on transfection. As always, thanks for watching!
Related Videos
Basic Methods in Cellular and Molecular Biology
224.2K 閲覧数
Basic Methods in Cellular and Molecular Biology
192.6K 閲覧数
Basic Methods in Cellular and Molecular Biology
725.6K 閲覧数
Basic Methods in Cellular and Molecular Biology
608.4K 閲覧数
Basic Methods in Cellular and Molecular Biology
480.5K 閲覧数
Basic Methods in Cellular and Molecular Biology
739.5K 閲覧数
Basic Methods in Cellular and Molecular Biology
115.6K 閲覧数
Basic Methods in Cellular and Molecular Biology
253.2K 閲覧数
Basic Methods in Cellular and Molecular Biology
308.3K 閲覧数
Basic Methods in Cellular and Molecular Biology
110.5K 閲覧数
Basic Methods in Cellular and Molecular Biology
505.1K 閲覧数
Basic Methods in Cellular and Molecular Biology
170.7K 閲覧数
Basic Methods in Cellular and Molecular Biology
189.5K 閲覧数
Basic Methods in Cellular and Molecular Biology
287.1K 閲覧数
Basic Methods in Cellular and Molecular Biology
377.7K 閲覧数