脊椎動物がもつ複雑な神経系の構造は、細胞の増殖、遊走、形態学的変化といった一連のプロセスを経て形成されていきます。これらのプロセスを研究することは、神経系機能についての理解と発達異常に起因する疾患の診断と治療につながります。しかしながら、特に哺乳動物の胎児がもつ神経組織へのアクセスは非常に難しく、実験操作を加えることが困難です。そこで、組織培養が利用されるようになりました。「器官培養」と呼ばれる培養法は、細胞構造を維持したまま生体から組織を取り出して実施し、神経発生過程を調べることができます。一般的に組織培養とは、神経組織を丁寧に分離し、実験に最適な栄養培地中で行うin vitro実験です。
このビデオでは、神経組織培養法の概要と他のin vitro実験より優れている点、そして健康な組織を維持するための注意点を解説しています。それからマウス胎児の脳を用いる組織培養の一般的なプロトコルを紹介しています。ここでは、母親からの胎児の単離や脳の解剖についてご覧いただけます。また、神経系組織を薄くスライスすることで成長している細胞がより視覚的に観察できる「スライス培養」についても解説しています。最後に、このテクニックを用いた神経発生研究例をご覧いただけます。
組織培養は特定の細胞集団や神経構造の発生を調べるためのテクニックとして利用されます。胎児から神経組織を切り出し培養することで生体外でも発生を継続させることができます。この培養法を用いるとin vivo実験では不可能な発生中の組織の操作および観察が可能となります。このビデオでは、組織培養を行う際の注意点と2種類の組織培養法のプロトコル、そしてこのテクニックのアプリケーション例を紹介していきます。
詳しい手順の前に、基本原理を簡単に解説しておきます。
組織培養法で、多くのモデル生物の様々な臓器や組織を体外で培養することが可能となります。
一般的な手順は、まず胎児から神経組織を丁寧に取り出し、それから目的の部位を切り出して人工的に培養します。
組織を薄く切り出したスライスを用いる培養法を「スライス培養」。また、 生体内環境を模倣した状態で 器官全体を用いて行う培養法を「器官培養」と呼びます。
開始前に使用する器具を70%エタノールで消毒しておきます。次にラボのマニュアルに従い妊娠マウスを安楽死させます。そして子宮を取り出し氷冷したバッファー中に入れておきます。ディッシュを解剖顕微鏡に移動させ、卵黄嚢から胎児を取り出します。次に、脳を単離し目的の部位を慎重に切り出し培養液の入ったディッシュに移します。
その後は37℃、CO2濃度5%で2〜3週間インキュベートし、その間2〜3日おきに培養液の50%を交換して下さい。
脳のスライス培養にはさらに数ステップが加わります。セクショニング前に、脳をアガロースに包埋し、組織を補強することでスライスするときに崩れににくくなります。
まずはアガロースが溶解するまで温め1.5%低融点アガロース溶液を調製します。次にアガロースを型に流し込み、組織の損傷を避けるために少し冷まします。
その後組織をゆっくりとアガロース中に沈めたら、固まるまで待ちます。
できあがったブロックを試料台に固定しビブラトームを使ってセクショニングしていきます。
これは刃を振動させることで生体組織を薄くスライスできる装置です。作製したスライスを培養液を入れたコーティングプレートに移し前述の通りインキュベートします。
組織培養をin vivoおよび in vitro実験に適用するメリットはたくさんあります。第一に体外へ分離された組織は様々な実験に適応しやすいことです。また、取り出してきた神経組織を用いることで、神経が発達している段階での複雑な細胞間の相互作用を研究できます。
さらに培養液の組成を調製できるため、組織片を利用して特定条件下での組織発生への影響を調べることができます。
しかしながら、自然な環境から取り出された組織は、その機能を維持するために特別な環境が必要になります。細胞外マトリックス又はECMは細胞の活動に影響を与える重要な因子であり、精製したECMたんぱく質は培養ディッシュのコーティング剤としてよく利用されます。
もう一つ注意しておきたいのが、組織片を浸す溶液です。一般的には細胞培養液が用いられますが、中には神経系を循環する体液に近い溶液を必要とする実験もあります。例えば、脳脊髄液はこのビデオに登場する実験系にとってとても重要な試薬となります。
組織培養法について学んだところで実験例を見ていきましょう。
細胞遊走の実験では組織片を利用し神経細胞の移動に関わる反発性および誘引性シグナルの研究が行われています。ここでは前もって成長因子に浸しておいたビーズを脳組織片の後ろ側に移植し神経細胞の遊走を調べています。
そして3〜4日後に共焦点顕微鏡を使って神経のイメージングを行います。運動神経細胞は血管内皮増殖因子がついたビーズに向かって遊走しますが、そうでないビーズの方には遊走していないことが分かります。
共培養法を利用して発生中の細胞間の相互作用を明らかにすることができます。ここでは、脊髄分節を筋細胞層の上で培養し脊髄運動ニューロンと骨格筋とのつながりを調べています。
早ければ培養後2日で、神経から突起が伸びているのが観察できます。
そして5日以内には筋細胞層の収縮を調整する神経ネットワークが構築されるのが確認できます。
神経系で発達中のニューロンは軸索を伸長し、目的組織と中枢神経系のネットワークを形成していきます。この複雑なシステムを研究する手段の一つは、軸索ガイダンスの解析です。組織片を用いた実験により、軸索を適切な場所へと誘導する神経由来因子およびその周辺の因子を明らかにすることができます。
ここまで組織培養についてご覧いただきました。このビデオでは組織培養の利点、培養方法、2種類の一般的なプロトコルと組織片を取り出す手順、そしてこのテクニックを利用した今日の研究を紹介しました。ご覧いただきありがとうございました。
Explant cultures serve as a technique to investigate the development of specific cell populations and neural structures. In developmental neuroscience experiments, explants are neural tissues excised from an embryo for continued development in vitro. These cultures give researchers the ability to manipulate and visualize the developing tissues in ways that are not possible in vivo. This video will introduce some important principles behind working with explanted tissues, step-by-step procedures for two approaches to explant culture, as well as applications of this technique.
Before delving into the methods, lets go over some basic principles. Explants can be established from a number of model organisms and a variety of tissue types. Generally, the cultures are created by carefully removing neural tissue from an embryo, dissecting away a region of interest, and placing it into an artificial environment.
Tissues can also be sectioned into thin sheets and grown in “slice culture.” Because the culture environment is designed to mimic the in vivo conditions of the whole organ, this culture strategy is often called “organotypic.”
Before getting started, be sure to sterilize your instruments with 70% ethanol. Next, euthanize a pregnant mouse using your lab’s preferred method. Then, surgically excise the uterus and place in ice-cold buffer. Transfer the dish to a dissection microscope and remove individual embryos from their yolk sac. Next, isolate the brain, carefully dissect out your region of interest, and transfer to a culture dish containing culture medium. Explants can be maintained in a 37 °C incubator containing 5% CO2 for a few weeks by replacing 50% of the medium every 2 – 3 days.
Slice culture of brain tissue requires a few extra steps. Prior to sectioning, the tissue is embedded in agarose, which provides support to the tissue so it remains intact while it’s being sliced. To do this, a 1.5% low melting point agarose solution is heated until the agarose dissolves. Next, the agarose is transferred to embedding molds and allowed to cool slightly to avoid damaging the tissue.
The tissue can then be carefully submerged and the agarose left to harden. The resulting blocks are trimmed and then glued to a specimen stage and sectioned using a vibratome, which is an instrument that uses a vibrating blade to cut thin slices of living tissue. As slices are generated, they are carefully transferred to a coated plate containing culture media and cultured as previously mentioned.
There are a number of advantages to using explant cultures over in vivo and other in vitro methods. First, cells in explanted tissue are more accessible to experimental tools. Second, the fact that explants maintain the complex cellular architecture of developing neural tissue means that cell-cell interactions can be studied. Third, since they can control the chemical composition of the culture medium, scientists can use explants to test the effect of specific compounds on tissue development.
Nevertheless, since it’s being removed from its natural environment, special care must be taken to maintain happy and healthy tissue in vitro. For example, the presence of extracellular matrix, or ECM, has a significant impact on cell behavior, so purified ECM proteins are often used to coat culture dishes. Another important consideration is the solution in which the explants are bathed. While traditional cell culture media is often used, some experiments require solutions that closely resemble the fluid circulating in the central nervous system: the cerebrospinal fluid, which is a critical reagent in experiments like the ones you are about to see.
Now that we have gone over explant culture methods, lets see how these techniques are used.
Cell migration assays use explanted tissue to examine the repulsive and attractive signals that are involved in neural cell movement. In this experiment, beads that have been previously soaked in growth factors are implanted into hindbrain explants to examine neural cell migration. After 3 – 4 days of exposure, neurons were imaged using a confocal microscope. The results show that motor neurons migrate towards beads soaked in vascular endothelial growth factor, but not control beads soaked in buffer.
Co-culture assays are often used to investigate cell-cell interactions during development. In this example, segments of spinal cord were cultured on top of a layer of muscle cells to study how connections are made between spinal motor neurons and skeletal muscle. As early as 2 days after incubation, projections from the neurons, also known as neurites, are seen emerging from the explant. Within 5 days, functional innervation is observed by the contraction of the muscle cell layer.
During development of the nervous system, neurons must elongate their axons to establish a connection between the target tissue and the central nervous system. One way of studying this complex process is through axon guidance assays. Researchers use explanted tissues to examine the factors within the neurons and in the surrounding environment that help guide the axon to its proper location.
You’ve just watched JoVE’s guide to explant culture of neural tissue. This video covered an overview of the advantages of explant cultures, culture strategies, step-by-step protocols of two commonly used explant procedures and ways these techniques are used in the lab today.
Thanks for watching!
Neuroscience
89.0K 閲覧数
Neuroscience
92.1K 閲覧数
Neuroscience
92.4K 閲覧数
Neuroscience
60.0K 閲覧数
Neuroscience
143.6K 閲覧数
Neuroscience
152.6K 閲覧数
Neuroscience
44.3K 閲覧数
Neuroscience
50.7K 閲覧数
Neuroscience
55.0K 閲覧数
Neuroscience
67.7K 閲覧数
Neuroscience
66.5K 閲覧数
Neuroscience
15.5K 閲覧数
Neuroscience
22.3K 閲覧数
Neuroscience
20.0K 閲覧数
Neuroscience
37.5K 閲覧数