6.15: 미토콘드리아와 엽록체 유전자의 이동

Export of Mitochondrial and Chloroplast Genes
JoVE Core
Molecular Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Molecular Biology
Export of Mitochondrial and Chloroplast Genes

3,669 Views

02:19 min
November 23, 2020

Overview

A eukaryotic cell can have up to three different types of genetic systems: nuclear, mitochondrial, and chloroplast. During evolution, organelles have exported many genes to the nucleus; this transfer is still ongoing in some plant species. Approximately 18% of the Arabidopsis thaliana nuclear genome is thought to be derived from the chloroplast’s cyanobacterial ancestor, and around 75% of the yeast genome derived from the mitochondria’s bacterial ancestor. This export has occurred irrespective of the location or the size of the gene in the organellar genome;  large genes and, in some cases the entire organellar genome, have been found in the nucleus.

Gene transfer to the nucleus is coupled with the loss of the genetic autonomy of the organelle. However, many of the proteins coded by the exported genes are still produced by the nucleus and transported back to the organelle.  This is possible as the genes are modified to be compatible with nuclear transcriptional and translational machinery and undergo changes such as the addition of a promoter and a terminator. A targeting sequence is also added, so the resulting proteins get delivered to the specific organelle. This also enables the nucleus to control the supply of these proteins and regulate the biogenesis of the organelles. Sometimes, such exported genes evolve and perform new functions for the organelles other than their parent one. For example, almost 50% of plastid-derived genes in Arabidopsis thaliana carry out non-plastid functions.

There are several theories as to why organisms transfer genes from the organelles to the nucleus. Both mitochondria and chloroplasts generate free radicals which can cause harmful mutations in their DNA. Transfering vulnerable organellar genes to the nucleus may be one of the strategies to protect them from mutations. According to the genetic principle Muller’s ratchet, asexual reproduction leads to the accumulations of deleterious mutations which eventually can cause the extinction of the species. However once transferred to the sexual genome of the nucleus, the exported gene can undergo sexual recombination which helps it to prevent the accumulation of harmful mutations.  

Transcript

미토콘드리아와 엽록체에 있는 것과 같은 소기관 게놈은 원핵생물 조상의 게놈보다 작습니다. 이것은 진화 과정에서 대부분의 유전자가 핵으로 내보내졌고 다른 많은 유전자는 미토콘드리아 또는 엽록체 게놈으로 발달하기 전에 손실되었기 때문입니다.

이렇게 수출된 유전자는 세포소기관 DNA의 핵 통합체(nuclear integrant)로 알려져 있습니다. 구체적으로, 미토콘드리아의 유전자는 미토콘드리아 DNA의 핵 통합체이고, 엽록체의 유전자는 플라스티드 DNA의 핵 통합체입니다.

세포가 미토콘드리아와 엽록체의 유전자를 핵으로 전달할 수 있는 한 가지 이론은 미토콘드리아와 엽록체의 전자 전달 반응이 돌연변이를 일으키는 자유 라디칼을 생성한다는 것입니다. 이러한 유전자의 수출은 자유 라디칼에 대한 노출과 유해한 돌연변이의 가능성을 줄입니다.

또한 핵은 미토콘드리아나 엽록체보다 더 효과적인 DNA 복구 시스템을 가지고 있습니다.

미토콘드리아와 엽록체 DNA는 한쪽 부모로부터만 유전되기 때문에 성적 재조합을 거칠 수 없습니다. 그러나 일단 유전자가 핵 DNA에 통합되면 양쪽 부모의 유전자가 유전됩니다.

성 재조합은 양쪽 부모의 유전자를 재배열할 수 있게 하여 원치 않는 돌연변이의 축적을 방지하고 주변 환경에 대한 적응을 향상시킬 수 있습니다.

핵 DNA의 전사 및 번역 기계는 미토콘드리아와 엽록체의 그것과 다르다; 그러므로, 수출된 유전자는 제대로 기능하기 위해 몇 가지 변형을 거쳐야 한다.

이러한 변화에는 적절한 mRNA 및 단백질 생산에 필요한 프로모터 및 터미네이터에 대한 새로운 DNA 염기서열 삽입이 포함됩니다. 또한 단백질 생성물을 미토콘드리아 또는 엽록체로 유도하기 위해 표적화 염기서열을 추가합니다.

수출된 대부분의 유전자는 미토콘드리아와 엽록체에서 원래 기능을 유지합니다.그러나 어떤 경우에는 새로운 기능을 가진 유전자의 발달로 이어졌습니다.

Key Terms and definitions​

  • Chloroplast DNA - Genetic material found in chloroplasts that originates from its cyanobacterial ancestor.
  • Organelle - Complex structure within eukaryotic cells that conduct specific functions (e.g., Chloroplasts, Mitochondria).
  • Gene Export - The process of genes being transferred from organelles to the nucleus.
  • Mitochondrial DNA - Genetic material found in mitochondria that originates from its bacterial ancestor.
  • Muller's Ratchet - The principle that harmful mutations accumulate in asexual reproduction, potentially causing extinction.

Learning Objectives

  • Define Organelle – Explain what it is (e.g., Chloroplasts and Mitochondria).
  • Contrast Chloroplast DNA vs Mitochondrial DNA – Explain key differences in terms of their origin and function.
  • Explore Examples like Arabidopsis Thaliana – Describe how gene export occurs in this plant species.
  • Explain Mechanism of Gene Export – How organelles transfer genes to the nucleus.
  • Apply Muller's Ratchet in Context – Understand its significance in maintaining genetic health within species.

Questions that this video will help you answer

  • What is Chloroplast DNA and how does it relate to Gene Export?
  • How are Chloroplast DNA and Mitochondrial DNA different?
  • What role does Muller's Ratchet play in gene transfer from organelles to the nucleus?

This video is also useful for

  • Students – Understand how the concept of gene export can aid in conceptualizing the dynamics of cellular machinery.
  • Educators – Provides a comprehensive overview of cellular genetics, useful for teaching advanced biology topics.
  • Researchers – Insight into gene export's relevance in studying cellular evolution and genetics.
  • Science Enthusiasts – Offers a complex understanding of cellular machinery and the ongoing evolution of cellular structures.