10.2: 여러 단계에서 일어나는 발현 조절

Regulation of Expression Occurs at Multiple Steps
JoVE Core
Molecular Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Molecular Biology
Regulation of Expression Occurs at Multiple Steps

22,003 Views

02:24 min
November 23, 2020

Gene expression can be regulated at almost every step from gene to protein. Transcription is the step that is most commonly regulated. This involves the binding of proteins to short regulatory sequences on the DNA. This association can either promote or inhibit the transcription of a gene associated with the respective sequence.

Transcription results in the generation of precursor (pre-mRNA) that consists of both exons and introns, which needs further processing before being translated to a protein. This happens through mRNA splicing, which involves the removal of non-coding regions and merging of the coding ones. mRNA processing can also be used as a regulatory mechanism through variation in splicing patterns such as skipping of certain exons, alternative splicing, and inclusion of introns. 

The addition of a poly-A tail at the 3’ end and a 5’ cap to produce the mature mRNA are also regulatory points during RNA processing. Regulation occurs through variation in the polyadenylation signal, which determines where the poly-A tail will be added onto the mRNA.  In some cases, more than one poly-A signal is present at the 3’ end which will change the length of the 3’ untranslated region, but the final protein product will be the same. However, the stability and the translation potential the variants mRNA may differ, which can alter the amount of protein produced. In other cases, an additional poly-A signal is present on the intron or exon within the gene sequence which may lead to variation in splicing sites for polyadenylation and result in different proteins from the same strand of pre-mRNA.The addition of the 5’ cap, which is made up of methylated guanosine, is regulated by two mechanisms.  One involves the regulation of the methyltransferases that add the methyl group to the guanosine, and the other is through regulation of the cellular signaling pathways that lead to methylation.

Next, the mature mRNA needs to be transported from the nucleus to the cytoplasm through nuclear pore complexes (NPCs) to be translated. This is regulated by the mRNA to forming a complex, known as the ribonucleoparticle, with RNA binding proteins. NPCs only allow mRNAs that are in the complex to pass into the cytoplasm. Once an mRNA enters the cytoplasm for translation, it can either be targetted individually or as a part of a group through specific regulations, or it can undergo a common regulation with all other mRNAs in the cytoplasm. In specific regulation, particular trans-acting elements, like proteins and different types of RNAs, regulate transcription. In general regulation, the proteins involved in the translation machinery are activated or inhibited, which in turn affects the translation of all transcripts. The most common translational regulatory mechanism is the modification of the translation initiation factor.

Gene expression can also be regulated through post-translational modifications, where an enzyme-catalyzed reversible modification can alter the function of a protein. A common post-translational modification is phosphorylation, which is carried out by enzymes known as kinases. Dephosphorylation of proteins, on the other hand, is carried out by proteins known as phosphatases. Phosphorylation of a protein can result in its activation or deactivation and alter its function.

Transcript

세포는 DNA에서 단백질에 이르기까지 모든 단계에서 유전자 발현을 정확하게 조절할 수 있습니다. 이 규정은 전사 중에 발생합니다. RNA 처리, 국소화 및 분해 중; 그리고 번역 중과 번역 후.

전사 조절은 DNA의 조절 서열에 결합하는 단백질에 의해 매개됩니다. 이러한 전사 인자는 유전자 발현을 제어하는 가장 일반적인 방법 중 하나이며 전사를 시작하거나 방지할 수 있습니다.

전사는 여러 조절된 과정을 통해 mRNA를 성숙시키기 위해 처리해야 하는 사전 mRNA를 생성합니다.

mRNA 스플라이싱은 전구체 mRNA의 비코딩 영역을 제거하고 코딩 영역을 결합하며, 차등 스플라이싱 패턴과 RNA 결합 단백질을 통해 유전자 발현을 제어합니다.성숙한 mRNA를 생성하기 위해 poly-A 꼬리와 5′ 캡을 추가하는 것도 제어됩니다.

다음으로, mRNA는 RNA 결합 단백질과 결합하여 리보핵입자로 알려진 복합체를 형성해야 합니다. 이 과정은 고도로 조절되며, 리보핵입자에 존재하는 mRNA만이 핵에서 세포질로 운반되어 번역될 수 있습니다.

번역 제어는 유전자 발현 조절을 위한 또 다른 중요한 포인트입니다. 조절은 개별 또는 하위 집합 mRNA가 관여하는 경우 구체적일 수도 있고, 대부분의 mRNA 전사체가 영향을 받는 경우 일반적일 수도 있습니다.

특정 조절에서 번역 억제는 단백질 및 microRNA 및 짧은 간섭 RNA를 포함한 특정 유형의 RNA와 같은 trans-acting elements와의 상호 작용을 통해 제어됩니다.

일반적으로 번역 기계에 관여하는 다양한 단백질이 활성화되거나 억제되어 모든 전사체에 영향을 미칩니다.

마지막으로, 인산화(phosphorylation)와 같은 번역 후 변형(post-translational modification)은 단백질을 활성화하거나 비활성화할 수 있는 반면, 유비퀴틴화(ubiquitination)와 같은 다른 변형은 단백질의 분해를 초래할 수 있습니다.