Summary

의 발달 프로세스 추적 및 정량화<em> C. 엘레</em> 오픈 소스 도구를 사용하여

Published: December 16, 2015
doi:
Please note that all translations are automatically generated. Click here for the English version.

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Disclosures

The authors have nothing to disclose.

Acknowledgements

Materials

Stereo microscopeMotic/VWROT4005SStereo microscope for dissection and mounting
Polybead Polystyrene Microspheres,&nbsp;Polysciences18329Embryo mounting
20 &micro;m
Polybead Polystyrene Microspheres,&nbsp;Polysciences876Adult animal mounting
0.1 &micro;m
Microscope slidesVWR631-0902Adult animal mounting
Cover glass 18×18 mmVWR631-1331Embryo/adult mounting
Cover glass 24×60 mmVWR631-1339Embryo mounting
ScalpelVWR233-5455Embryo dissection
Silicone tubingVWR228-1501Tubing for mouth pipette
30 mm PTFE membrane filterNeoLabJul-01Filter for mouth pipette
Capillary tubesVWR621-0003Pipette tip for mouth pipette
VaselineRothE746.1Embryo/adult mounting
AgarRoth5210.5Adult animal mounting
Potassium-di-hydrogenphosphateRothP018.2M9 buffer
Di-sodium- hydrogenphosphateRothP030.2M9 buffer
Sodium chlorideRoth3957.1M9 buffer
VisiScope Spinning Disc Confocal SystemVisitron Systemsn/aConfocal microscopy

References

  1. Sulston, J. E., Schierenberg, E., White, J. G., Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100 (1), 64-119 (1983).
  2. Kimmel, C. B., Warga, R. M. Tissue-specific cell lineages originate in the gastrula of the zebrafish. Science. 231 (4736), 365-368 (1986).
  3. Nishida, H. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev. Biol. 121 (2), 526-541 (1987).
  4. Lee, T., Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron. 22 (3), 451-461 (1999).
  5. Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., Sanes, J. R., Lichtman, J. W. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature. 450 (7166), 56-62 (2007).
  6. Fernandez, R., Das, P., Mirabet, V., Moscardi, E., Traas, J., Verdeil, J. L., Malandain, G., Godin, C. Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat. Methods. 7 (7), 547-553 (2010).
  7. Olivier, N., et al. Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy. Science. 329 (5994), 967-971 (2010).
  8. Kitajima, T. S., Ohsugi, M., Ellenberg, J. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell. 146 (4), 568-581 (2011).
  9. Schrödel, T., Prevedel, R., Aumayr, K., Zimmer, M., Vaziri, A. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods. 10 (10), 1013-1020 (2013).
  10. Du, Z., Santella, A., He, F., Tiongson, M., Bao, Z. De novo inference of systems-level mechanistic models of development from live-imaging-based phenotype analysis. Cell. 156 (1-2), 359-372 (2014).
  11. Amat, F., et al. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods. 11 (9), 951-958 (2014).
  12. He, B., Doubrovinski, K., Polyakov, O., Wieschaus, E. Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation. Nature. 508 (7496), 392-396 (2014).
  13. Singh, D., Pohl, C. Coupling of rotational cortical flow, asymmetric midbody positioning, and spindle rotation mediates dorsoventral axis formation in C. elegans. Dev. Cell. 28 (3), 253-267 (2014).
  14. Singh, D., Pohl, C. A function for the midbody remnant in embryonic patterning. Commun. Integr. Biol. 7, e28533 (2014).
  15. Kremer, J. R., Mastronarde, D. N., McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116 (1), 71-76 (1996).
  16. Henriksson, J., Hench, J., Tong, Y. G., Johansson, A., Johansson, D., Bürglin, T. R. Endrov: an integrated platform for image analysis. Nat. Methods. 10 (6), 454-456 (2013).
  17. Thielicke, W., Stamhuis, E. J. PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. Journal of Open Research Software. 2 (1), e30 (2014).
  18. Kim, E., Sun, L., Gabel, C. V., Fang-Yen, C. Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization. PLoS One. 8 (1), e53419 (2013).
  19. Dickinson, D. J., Ward, J. D., Reiner, D. J., Goldstein, B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat. Methods. 10 (10), 1028-1034 (2013).
  20. Schonegg, S., Constantinescu, A. T., Hoege, C., Hyman, A. A. The Rho GTPase-activating proteins RGA-3 and RGA-4 are required to set the initial size of PAR domains in Caenorhabditis elegans one-cell embryos. Proc. Natl. Acad. Sci. U. S. A. 104 (38), 14976-14981 (2007).
  21. Schmutz, C., Stevens, J., Spang, A. Functions of the novel RhoGAP proteins RGA-3 and RGA-4 in the germ line and in the early embryo of C. elegans. Development. 134 (19), 3495-3505 (2007).
  22. Naganathan, S. R., Fürthauer, S., Nishikawa, M., Jülicher, F., Grill, S. W. Active torque generation by the actomyosin cell cortex drives left-right symmetry breaking. Elife. 3, e04165 (2014).
  23. Kaletta, T., Schnabel, H., Schnabel, R. Binary specification of the embryonic lineage in Caenorhabditis elegans. Nature. 390 (6657), 294-298 (1997).
  24. Schnabel, R., et al. Global cell sorting in the C. elegans embryo defines a new mechanism for pattern formation. Dev. Biol. 294 (2), 418-431 (2006).
  25. Murray, J. I., Bao, Z., Boyle, T. J., Waterston, R. H. The lineaging of fluorescently-labeled Caenorhabditis elegans embryos with StarryNite and AceTree. Nat. Protoc. 1 (3), 1468-1476 (2006).
  26. Giurumescu, C. A., et al. Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos. Development. 139 (22), 4271-4279 (2012).
  27. Dejima, K., Kang, S., Mitani, S., Cosman, P. C., Chisholm, A. D. Syndecan defines precise spindle orientation by modulating Wnt signaling in C. elegans. Development. 141 (22), 4354-4365 (2014).
  28. Schnabel, R., Hutter, H., Moerman, D., Schnabel, H. Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev Biol. 184 (2), 234-265 (1997).
Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools

Play Video

Cite This Article
Dutta, P., Lehmann, C., Odedra, D., Singh, D., Pohl, C. Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools. J. Vis. Exp. (106), e53469, doi:10.3791/53469 (2015).

View Video