To unravel the earliest molecular mechanisms underlying prostate cancer initiation, novel and innovative human model systems and approaches are desperately needed. The potential of pre-prostatic urogenital sinus mesenchyme (UGSM) to induce pluripotent stem cell populations to form human prostate epithelium is a powerful experimental tool in prostate research.
Progress in prostate cancer research is severely limited by the availability of human-derived and hormone-naïve model systems, which limit our ability to understand genetic and molecular events underlying prostate disease initiation. Toward developing better model systems for studying human prostate carcinogenesis, we and others have taken advantage of the unique pro-prostatic inductive potential of embryonic rodent prostate stroma, termed urogenital sinus mesenchyme (UGSM). When recombined with certain pluripotent cell populations such as embryonic stem cells, UGSM induces the formation of normal human prostate epithelia in a testosterone-dependent manner. Such a human model system can be used to investigate and experimentally test the ability of candidate prostate cancer susceptibility genes at an accelerated pace compared to typical rodent transgenic studies. Since Human embryonic stem cells (hESCs) can be genetically modified in culture using inducible gene expression or siRNA knock-down vectors prior to tissue recombination, such a model facilitates testing the functional consequences of genes, or combinations of genes, which are thought to promote or prevent carcinogenesis.
The technique of isolating pure populations of UGSM cells, however, is challenging and learning often requires someone with previous expertise to personally teach. Moreover, inoculation of cell mixtures under the renal capsule of an immunocompromised host can be technically challenging. Here we outline and illustrate proper isolation of UGSM from rodent embryos and renal capsule implantation of tissue mixtures to form human prostate epithelium. Such an approach, at its current stage, requires in vivo xenografting of embryonic stem cells; future applications could potentially include in vitro gland formation or the use of induced pluripotent stem cell populations (iPSCs).
There is a tremendous need for better human model systems of prostate cancer. In particular, relevant human model systems of normal, non-malignant prostate tissues which can be genetically manipulated to directly discern the role of specific genes in the initiation of prostate cancer would be incredibly informative. The advent of the genomic era has identified numerous genes which may have a role in cancer formation. A lack of experimental human model systems, however, severely impairs our ability to functionally test and characterize candidate prostate cancer susceptibility genes. An ideal model system would facilitate the rapid and more rapid functional analyses of cancer susceptibility genes in combination with appropriate transgenic rodent model systems. Furthermore, such a human model system would enable molecular characterization of the signaling mechanisms of prostate carcinogenesis toward the discovery and validation of novel therapies to prevent prostate cancer formation.
Human embryonic stem cells (hESCs) are capable of forming human prostatic tissues as xenografts. In 2006 Taylor, et al. reported that hESCs can be induced to form prostatic epithelia in vivo when re-combined with rodent urogenital sinus mesenchyme (UGSM) within a time period of 8-12 weeks.1 These studies were based upon previous work by the Cunha lab showing that rodent embryonic UGSM can promote prostatic differentiation of stem cells and embryonic epithelial cell populations in vivo.2,3 The prostate develops from an embryonic anlagen termed the urogenital sinus (UGS), and prior to embryonic day 17 (mouse E17; day E18 in the rat) the UGS can be removed and physically divided into epithelium (UGSE) and mesenchyme (UGSM).4 This tissue recombination approach has significantly enhanced our understanding of prostate development and carcinogenesis, particularly growth factor and hormonal signaling pathways and the molecular relationships between prostate stroma and epithelium.5-8 This method involves the ex vivo combination of UGSM with stem or epithelial cells from the same or distinct species and these cellular/tissue recombinants are implanted and grown and xenografts within mouse host.4,9 After a period of in vivo growth, the implant contains prostate epithelial glandular structures embedded in stromal tissue. Further staining can be conducted to determine whether such structures are truly prostatic and of human origin.10,11
Tissue recombination using UGSM is an incredibly useful technique to investigate the development of the prostate and the molecular events leading to prostate cancer initiation. The inductive potential of UGSM has been used for numerous applications in prostate research; these include enhancing tumor take of prostate cell lines and tumors, studying stromal-epithelial interactions, and forming cross-species prostate recombinants.7,17-20 Proper preparation of UGSM, however, is critical to experimental succ…
The authors have nothing to disclose.
We wish to acknowledge the support of the University Of Chicago Section Of Urology led by Dr. Arieh Shalhav, and the Director of Urologic Research Dr. Carrie Rinker-Schaeffer. We would also like to acknowledge the support of the University of Chicago Comprehensive Cancer Center (UCCCC) led by Dr. Michelle Le Beau. We also with to thank expert technical assistance of the Human Tissue Resource Center core facility led by Dr. Mark Lingen, and the assistance of Leslie Martin and Mary Jo Fekete. We also thank the Immunohistochemistry Core Facility run by Terri Li. This work was funded by the University of Chicago Department of Surgery, the Section of Urology; an American Cancer Society Institutional Research Grant (ACS-IRG, #IRG-58-004); a Cancer Center Support Grant (P30 CA14599); The Brinson Foundation; the Alvin Baum Family Fund; The University of Chicago Cancer Research Foundation Women’s Board; S. Kregel is supported by an HHMI: Med-into-Grad Fellowship (56006772) and a Cancer Biology Training Grant (T32-CA09594). Finally, we would like to thank Robert Clark, Dr. VenkateshKrishnan, and Nathan Stadick for their critical evaluation of the manuscript.
Name | Company | Catalogue Number | Comments |
Hank’s Balanced Salt Solution (HBSS) | GIBCO | 14170 | |
DMEM/F12 | GIBCO | 11330 | |
R1881 | Sigma | 965-93-5 | Mix to 1 ug/ml in Ethanol (1,000x stock) |
NEAA | GIBCO | 11140 | |
Pen-Strep Solution | GIBCO | 15070 | 100x stock |
Matrigel | BD Biosciences | 354230 | |
KETASET (ketamine hydrochloride) | Fort Dodge Animal Health | NDC 0856-2013-01 | 100 mg/ml; dilute 1:10 in sterile saline |
AnaSed (xylazine) | VET-A-MIX, Inc. | NADA 139-236 | 20 mg/ml; dilute 1:10 in sterile saline |
Trypsin | BD Biosciences | 215240 | |
Collagenase | Sigma | C2014 | |
Ketoprofen | Fort Dodge | NDC 0856-4396-01 | 100 mg/ml; dilute 1:1,000 in sterile saline |
Altalube eye ointment | Altaire Pharmaceuticals, Inc. | NLC 56641-19850 | |
Leica MZ16 F Stereomicroscope | Leica | Any good dissecting scope can be used. | |
Vannas spring scissors | Fine Science Tools | 15001-08 | |
Syringe | Hamilton | 84855 | |
Hamilton Needle, Small RN, 28 gauge, 0.5inches, Point Style #3 (Blunt) | Hamilton | 7803-02 | Custom Needle |
Ethanol Prep Pads | Fisher Scientific | 06-669-62 | |
Sterile Gauze Pads | Fisher Scientific | 22-415-469 | |
Ethicon Vicryl Suture (4-0 FS-2) | MedVet International | J392H | Needle-in, dissolvable suture |
Autoclip 9 mm Wound Clips | Becton Dickenson | 427631 | |
PVP Iodine Prep Pads | Fisher Scientific | 06-669-98 | |
Dissector scissor with blunt end | Fine Science Tools | 14072-10 | |
Dumont fine tip forceps | Fine Science Tools | 11252-50 | |
Needle holder with Scissor | Fine Science Tools | 12002-14 |