Flow cytometric analysis of Bimolecular Fluorescence Complementation provides a high throughput quantitative method to study protein-protein interaction. This methodology can be applied to mapping protein binding sites and for screening factors that regulate protein-protein interaction.
Among methods to study protein-protein interaction inside cells, Bimolecular Fluorescence Complementation (BiFC) is relatively simple and sensitive. BiFC is based on the production of fluorescence using two non-fluorescent fragments of a fluorescent protein (Venus, a Yellow Fluorescent Protein variant, is used here). Non-fluorescent Venus fragments (VN and VC) are fused to two interacting proteins (in this case, AKAP-Lbc and PDE4D3), yielding fluorescence due to VN-AKAP-Lbc-VC-PDE4D3 interaction and the formation of a functional fluorescent protein inside cells.
BiFC provides information on the subcellular localization of protein complexes and the strength of protein interactions based on fluorescence intensity. However, BiFC analysis using microscopy to quantify the strength of protein-protein interaction is time-consuming and somewhat subjective due to heterogeneity in protein expression and interaction. By coupling flow cytometric analysis with BiFC methodology, the fluorescent BiFC protein-protein interaction signal can be accurately measured for a large quantity of cells in a short time. Here, we demonstrate an application of this methodology to map regions in PDE4D3 that are required for the interaction with AKAP-Lbc. This high throughput methodology can be applied to screening factors that regulate protein-protein interaction.
650,000 protein-protein interactions are estimated to exist in the human interactome, playing critical roles in maintaining normal cell functions 1,2. Besides co-immunoprecipitation (co-IP), the gold standard to study protein-protein interaction from cell lysate, several protein fragment complementation assays (PCA) have been developed to improve sensitivity in detecting protein-protein interaction inside cells 3. Techniques include Förster resonance energy transfer (FRET), Bioluminescence Resonance Energy Transfer (BRET), and Bimolecular Fluorescence Complementation (BiFC) 4,5. BiFC is based on the facilitated association of two fragments of a fluorescent protein (here we use Venus; a YFP variant) that are each fused to a potential interacting protein partner (in this example we use AKAP-Lbc and PDE4D3). Interaction of the two proteins of interest inside cells results in functional fluorescence, which can be visualized by fluorescence microscopy using either live or fixed cells 6,7,8. Compared to other PCAs, BiFC is sensitive and less technically challenging, with potential to study the cellular localization in live cells. A major drawback of this technique however is that once formed, the fluorescent protein complex cannot be reversed. Therefore it is not a good method to study dynamic protein-protein interaction. In this paper, we use BiFC to map the interaction sites of PDE4D3 with AKAP-Lbc by monitoring the fluorescence intensities of Venus. Compared to traditional analysis using fluorescence microscopy, which is time-consuming and labor-intensive (if not carried out using automated high throughput machinery), flow cytometry provides a straightforward quantitative analysis of thousands of cells in a heterogeneous population over a short time 9,10. Here, by carrying out a side-by-side comparison of flow cytometric-BiFC analysis and traditional co-IP, we demonstrate that the two methods provide comparable data, however, flow cytometric BiFC analysis is less time consuming and uses less material which may be more useful when cells of interest are limited.
1. Cell Transfection
24-well plate (ng) | 6-well plate (ng) | |
CFP-vector | 10 | 50 |
VNN-AKAP-Lbc | 200 | 1000 |
VCN-PDE4D3-FL(full-length PDE4D3) | 2.5, 5, 10, 20, 40, 80 | 100 |
VCN-PDE4D3-UCR1(a PDE4D3 N-terminal fragment containing the UCR1 domain) | 100 | |
VCN-PDE4D3-UCR2+CAT (a PDE4D3 C-terminal fragment containing the UCR2 and catalytic domains) | 100 |
2. Cell Preparation for Flow Cytometry, Western Blot, and Immunofluorescence
3. Flow Cytometry and Immunofluorescence Microscopy
4. Data Analysis (Performed Using Summit Software)
BiFC is a simple and sensitive method to study protein-protein interaction. This method cannot be used to identify new protein-protein interactions, however, it is especially convenient to confirm protein-protein interaction inside cells and to study functional properties; such as subcellular localization of protein complexes, mapping of protein-protein interaction sites, and for screening of small molecules/peptides that can modulate protein-protein interaction. Because VN and VC fragments are non-fluorescent, background fluorescence is low, thus aiding the sensitivity of this assay. Time is needed to mature/stabilize the VN-protein-VC-protein interaction, thus there is delay to visualizing the protein-protein interaction, and optimal time-points may therefore have to be empirically determined. It should also be noted that VN-protein-VC-protein interaction is not reversible, therefore unfortunately with current Venus BiFC constructs this assay is not suitable to study dynamic kinetics of protein-protein interaction.
Proper controls are important for BiFC analysis. A suitable negative control includes non-interacting proteins or non-specific peptides in the relevant BiFC vector, or if possible, a mutant that disrupts protein-protein interaction. Empty BiFC vector is not a good control as it results in non-specific high background fluorescence. If BiFC is not observed in two interacting proteins, expression should be analyzed. Also, BiFC signal may vary depending on the protein-protein interaction sites. It should be noted that spatial modulation of VN and VC interaction may also affect the fluorescence intensity; therefore it is initially important to carry out BiFC experiments using both C-terminal and N-terminal VN/VC expression constructs. For example, BiFC may not occur if protein-protein interaction blocks the re-association of the Venus fragments. Therefore, multiple combinations of VN and VC constructs should be tested (i.e. both C and N terminal protein fusions).
Fluorescence intensity of BiFC is proportional to the strength of protein-protein interaction, with higher BiFC intensity indicating stronger interaction and a lower fluorescence intensity suggesting weaker interaction. BiFC MFI is therefore used as indicator for protein-protein interaction. For precise analysis of protein-protein interaction by BiFC, it is very important that Western blot analysis is performed to ensure equal expression of different constructs and that no protein degradation is occurring, which may interfere with correct analysis. Lysate from the same samples is therefore preferred for Western blot analysis to determine similar protein expression for all samples analyzed. Additionally, it is critical to determine suitable amount of plasmids for transfection to ensure linear expression and interaction of proteins, and among this range, the interaction of protein correlates with fluorescence intensity of BiFC signal.
Low amount of CFP plasmid is used as a marker for successful transfection, so only CFP positive cells were analyzed here. A different fluorescent protein, such as RFP could be used to minimize the bleed-through between colors11. For Flow Cytometry, single positive cells are needed to be included for compensation. If possible, at least 10,000 CFP positive cells are counted to ensure a good sample size.
In summary, here we demonstrate that coupling BiFC methodology with flow cytometric analysis can be used as a good indicator of protein-protein interaction inside cells. Traditional analysis of BiFC using immunofluorescence microscope is time consuming, and sample size is much lower than that corresponding to flow cytometric analysis. Thus, coupling flow cytometry with BiFC may be advantageous for analysis of protein-protein interaction when transfection efficiency is low. In this report, we took advantage of BiFC-Flow Cytometry to map the interaction sites in PDE4D3 for binding to AKAP-Lbc. This technique could also be extended to screen for molecules or peptides that may disrupt or enhance protein-protein interaction, for drug discovery 12. This method can also be used to study certain physiological events, such as ligand-induced internalization of GPCR’s 13.
The authors have nothing to disclose.
We thank the O’Bryan lab at UIC for critical experimental evaluation and discussion. This work was supported by American Heart Association Grant 11SDG5230003 to GKC and National Center for Advancing Translational Science – UIC Center for Clinical and Translational Sciences Grant UL1TR000050.
<strong>REAGENTS</strong> | |||
Dulbecco’s modified Eagle’s media (DMEM) | Invitrogen | 11965-092 | |
Penicilin-Streptomycin (pen/strep), 100x | Invitrogen | 15070-063 | |
Fetal Bovine Serum (FBS) | Invitrogen | 16000-044 | |
Anti-Flag antibody | Sigma | M2, F1804 | |
Anti-HA antibody | Covance | 16B12, MMS-101R | |
α-tubulin | Sigma | DM1A, T9026 | |
Anti-GFP antibody | Clontech | 632569 | |
Cell culture plates, 6-well tissue culture treated | Thermo Fisher Scientific | 130184 | |
HEK 293T cells | ATCC | CRL-11268 | |
Maxiprep plasmid purification kit, high speed | Qiagen | 12663 | |
Dulbecco’s Phosphate-buffered saline (DPBS), sterile 1x | Invitrogen | 14190-144 | |
Trypsin-EDTA, 0.05% (w/v) | Gibco | 25300 | |
Polystyrene round-bottom tubes for FACS staining | BD Biosciences | 352052 | |
Paraformaldehyde | Fisher Scientific | S74337MF | |
Prolong gold antifade reagent with DAPI | Invitrogen | P-36931 | |
Superfrost plus Microscope slides | Fisher Scientific | 12-550-15 | |
Fisherfinest premium cover glass | Fisher Scientific | 12-548-5P | |
<strong>EQUIPMENT</strong> | |||
CO<sub>2</sub> air-jacketed Incubator | NuAIR DH autoflow | ||
Confocal microscope LSM510 META | Carl Zeiss, Inc | ||
Electrophoresis and transfer unit | Biorad | ||
Cyan ADP Flow Cytometer | Beckman Coulter |