We describe a protocol for using insect antennae in the form of electroantennograms (EAGs) on autonomous robots. Our experimental design allows stable recordings within a day and resolves individual odor patches up to 10 Hz. The efficiency of EAG sensors for olfactory searches is demonstrated in driving a robot toward an odor source.
Robots designed to track chemical leaks in hazardous industrial facilities1 or explosive traces in landmine fields2 face the same problem as insects foraging for food or searching for mates3: the olfactory search is constrained by the physics of turbulent transport4. The concentration landscape of wind borne odors is discontinuous and consists of sporadically located patches. A pre-requisite to olfactory search is that intermittent odor patches are detected. Because of its high speed and sensitivity5-6, the olfactory organ of insects provides a unique opportunity for detection. Insect antennae have been used in the past to detect not only sex pheromones7 but also chemicals that are relevant to humans, e.g., volatile compounds emanating from cancer cells8 or toxic and illicit substances9-11. We describe here a protocol for using insect antennae on autonomous robots and present a proof of concept for tracking odor plumes to their source. The global response of olfactory neurons is recorded in situ in the form of electroantennograms (EAGs). Our experimental design, based on a whole insect preparation, allows stable recordings within a working day. In comparison, EAGs on excised antennae have a lifetime of 2 hr. A custom hardware/software interface was developed between the EAG electrodes and a robot. The measurement system resolves individual odor patches up to 10 Hz, which exceeds the time scale of artificial chemical sensors12. The efficiency of EAG sensors for olfactory searches is further demonstrated in driving the robot toward a source of pheromone. By using identical olfactory stimuli and sensors as in real animals, our robotic platform provides a direct means for testing biological hypotheses about olfactory coding and search strategies13. It may also prove beneficial for detecting other odorants of interests by combining EAGs from different insect species in a bioelectronic nose configuration14 or using nanostructured gas sensors that mimic insect antennae15.
Nowadays, animals like dogs are frequently used in safety and security applications that involve the localization of chemical leaks, drugs and explosives because of their excellent smell detection capabilities16. Yet, they show behavioral variations, get tired after extensive work, and require frequent retraining as their performance decreases over time17. One way to circumvent these limitations is to replace trained dogs by olfactory robots.
Nonetheless, tracking scents and odor sources is a major challenge in robotics. In turbulent environments, the landscape of an odor plume is very heterogeneous and unsteady, and consists of sporadically located patches4. Even at moderate distances from the source, as short as few meters, detections become sporadic and only provide cues intermittently. Furthermore, local concentration gradients during detections do not generally point towards the source. Given discontinuous flow of information and limited local information when detections are made how to navigate a robot toward the source?
It is well known that insects such as male moths use chemical communication to successfully locate their mates over long distances (hundreds of meters). To do so, they adopt a stereotypical behavior18-20: they surge upwind upon sensing an odor patch and perform an extended search called casting when odor information vanishes. This surge-casting strategy is purely reactive, i.e. actions are completely determined by current perceptions (detection and non-detection events). Yet, its implementation on olfactory robots had limited success in the past because the detection of odor patches is hampered by the slowness of artificial gas sensors.
Metal-oxide sensors used in most of the olfactory robots have response and recovery times of several tens of seconds so that they generally filter out the concentration fluctuations encountered in turbulent plumes21. In contrast, the response time of insect chemoreceptors is much shorter, e.g., the rise time of insect electroantennograms (EAGs) is less than 50 msec22. Consequently, by using insect EAGs, odor pulses are resolved at frequencies of several Hertz23. This property makes EAG sensors well suited for the detection of odor filaments in natural plumes. We describe here a protocol for embedding insect EAGs on robots allowing for efficient olfactory searches using surge and casting strategies.
Almost twenty years ago, Kanzaki and his colleagues pioneered the idea of using EAGs on olfactory robots29-30. Their technique was originally based on excised antennae. Here, we recorded from intact antennae to improve the sensitivity and the lifetime of the preparation. Other studies31-32 also noticed the superiority of whole-body preparations over isolated antennae. In our robotic experiments, we experienced stable recordings within a day. In contrast, EAGs recorded on isolated antennae have a lifetime of 2 hr (Figure 5).
Our EAG-robotic platform was primarily developed to test biological hypotheses about olfactory coding and search strategies in insects13. Similar to central neurons receiving input from insect antennae, we connected a neuron model to a real moth antenna on a robot and performed pheromone detection based on its firing pattern. Detection and non-detection events were then used to drive the robot toward the source of pheromone. The reactive search strategy considered here was inspired by the behavioral patterns of male moths attracted by a sex pheromone. It performed well in laboratory conditions (Figure 6), allowing the localization of a low emission source (pheromone dose of 10 μg in our case versus 10 mg in previous work24) in a relatively large search space (initial distance from source of 2 m versus 10 cm in previous experiments20-21).
These robotic experiments should be considered as a proof of concept showing that insect antennae are suitable for robotic olfactory searches. Although insect antennae are known to respond to toxic gases, drugs and explosives9-11, several extensions are needed for coping with real world applications. First, a more sophisticated search method34-36 may be more efficient at distances beyond 10 m, when the reacquisition of the plume becomes very unlikely. Second, it may be necessary to combine EAGs from different species in a bio-electronic nose configuration14 in order to detect odorants of interests. Third, stereo sensing capabilities obtained by recording from the two antennae of the same insect may prove beneficial in terms of effectiveness. Two sensors employed in parallel may indeed increase directionality. Fourth, extensions of the search strategy to collective robotic searches37 are ought to be considered for practical applications even if they are not biologically relevant in the case of moths.
The authors have nothing to disclose.
This work was funded by the state program Investissements d’avenir managed by ANR (grant ANR-10-BINF-05 ‘Pherotaxis’).
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Agrotis ipsilon | PISC | moth | |
http://www-physiologie-insecte.versailles.inra.fr/indexenglish.php | |||
Robot Khepera III | K-team | Khe3Base + KorBotLE + KorWifi | |
www.k-team.com | |||
KoreIOLE | K-team | Input/output extension board | |
EAG-robot interface | LORIA | Custom-made hardware and software | |
www.loria.fr | |||
Sirene | LORIA | neuronal simulator sirene.gforge.inria.fr | |
Eagle | CadSoft www.cadsoftusa.com | PCB design software | |
Micromanipulator | Narishige / Bio-logic | UN-3C | |
Magnet base | Narishige/ Bio-logic | USM-6 | |
Adapter | Narishige/ Bio-logic | UX-6-6 | |
Rotule | Narishige/ Bio-logic | UPN-B | |
Micro scisors | MORIA / Phymep | 15371-92 | |
Stereo microscope Zeiss Stémi 2000 | Fisher Scientific | B19961 | |
Light source 20W KL200 | Fisher Scientific | W41745 | |
Narishige PC-10 Na PC-1 | Narishige | Narishige PC-10 | |
Capillaries Na PC-1 | Fisher scientific | C01065 | |
Pheromone cis-7-Dodecenyl acetate(Z7-12:OAc) | Sigma-Aldrich | 259829 | |
Pack of 3 pipettes | Eppendorf | 4910000514 | For pheromone dilution and deposition on paper filter |
2-20 µl/ 50-200 µl/ 100-1000 µl | |||
Gas sensor TGS2620 | Figaro www.figarosensor.com | Optional, for comparison with EAG | |
electrode puller | Narishige | PC-10 |