The neuromuscular junction (NMJ) is altered in a variety of conditions that can sometimes culminate in synaptic failure. This report describes fluorescence microscope-based methods to quantify such structural changes.
The neuromuscular junction (NMJ) is the large, cholinergic relay synapse through which mammalian motor neurons control voluntary muscle contraction. Structural changes at the NMJ can result in neurotransmission failure, resulting in weakness, atrophy and even death of the muscle fiber. Many studies have investigated how genetic modifications or disease can alter the structure of the mouse NMJ. Unfortunately, it can be difficult to directly compare findings from these studies because they often employed different parameters and analytical methods. Three protocols are described here. The first uses maximum intensity projection confocal images to measure the area of acetylcholine receptor (AChR)-rich postsynaptic membrane domains at the endplate and the area of synaptic vesicle staining in the overlying presynaptic nerve terminal. The second protocol compares the relative intensities of immunostaining for synaptic proteins in the postsynaptic membrane. The third protocol uses Fluorescence Resonance Energy Transfer (FRET) to detect changes in the packing of postsynaptic AChRs at the endplate. The protocols have been developed and refined over a series of studies. Factors that influence the quality and consistency of results are discussed and normative data are provided for NMJs in healthy young adult mice.
The neuromuscular junction (NMJ) is the critical relay synapse that mediates communication between the nervous system and skeletal muscle. It is required for all voluntary movement. Fluorescence microscopy has long been used to study the effects of transgenes on the mouse NMJ 1-3 or to compare the effects of age, diet, exercise and disease upon rodent NMJs 4-11. Such studies have taught us much about the physiology and pathophysiology of the NMJ, but the diverse parameters reported (e.g., AChR area, endplate area, perimeter length, fragmentation indices) often make it difficult to compare the findings of these studies. There is an increasing expectation for pre-clinical researchers to be able to demonstrate reproducibility, particularly in studies with rodent models of disease 12. The protocols described here were refined through a series of studies that investigated developmental, physiological and pathophysiological changes to the NMJ. Such studies require measurement of the area of synaptic specializations at the mouse motor endplate and the relative density of packing of synaptic proteins within postsynaptic specializations13-15.
The utility of these methods is illustrated by recent studies in a mouse model of anti-MuSK myasthenia gravis. Daily injections of IgG from anti-MuSK-positive myasthenia gravis patients into adult mice caused them to become weak within 2 weeks 16. Confocal maximum-projection images of muscle sections that were double-labeled for synaptophysin (in nerve-terminals) and postsynaptic AChRs revealed a progressive decline in the area of AChR staining as the primary change. Importantly the rate of decline was sufficient to explain comparable declines in the amplitude of synaptic potentials, failure of synaptic transmission and muscle weakness 17,18. Qualitatively similar findings were reported by other research groups 10,19. The same NMJ measurement methods have since been used to assess the impact of three drugs for treating anti-MuSK myasthenia gravis in this mouse model 20,21.
Sedentary aging can lead to loss of neuromuscular connections. The protocols described here have revealed an age-associated decline in the area of nerve terminal synaptophysin at motor endplates as mice progress into old age. The same methods revealed that voluntary exercise could largely prevent the reduction in presynaptic nerve terminal area 22, consistent with previous work by other groups 4. Loss of neuromuscular connections also occurs in the SOD1G93A mouse model of amyotrophic lateral sclerosis 9,23.
The studies mentioned above demonstrate that a variety of health conditions may lead to reductions in the area of either pre- or post-synaptic specializations at the NMJ. This may result in impaired synaptic function or may herald complete loss of the neuromuscular connection. Three protocols are described that allow quantitation of the area and density of synaptic specializations. The purpose of the first protocol is to provide a practical and reproducible measure of the areas of pre- and post-synaptic specializations and their alignment at mammalian NMJs, using fluorescence microscopy. Two-dimensional maximum projection confocal images and image analysis with NIH ImageJ is used to detect changes in the area of synaptophysin staining (synaptic vesicles), postsynaptic AChRs and synaptic overlap area. Confocal imaging parameters (gain and offset level) are optimized for each NMJ so as to maximize the visual information used to discern the area of synaptic specialization. Neuromuscular failure can also result from changes in the density of postsynaptic AChR and/or other synaptic proteins. The second protocol can be applied to detect changes in the relative density of postsynaptic proteins such as MuSK, rapsyn, dystroglycan, phosphorylated Src kinase and phosphorylated AChR 18,21.
In myasthenia gravis, a reduced density of AChR within the postsynaptic membrane is the immediate cause of synaptic failure and muscle weakness. The third protocol describes a Fluorescence Resonance Energy Transfer (FRET) method to assess changes in the proximity of adjacent AChRs within postsynaptic membranes 14,15. This method detects energy transfer between neighboring AChRs labeled with fluorescent-α-bungarotoxin (BGT). FRET occurs only when the fluorescent donor and acceptor probes are less than 10 nm apart. This can reveal (submicroscopic) changes in the tightness of AChR packing that may directly relate to the amplitude of synaptic potentials.
These three protocols, refined over the past decade, provide complementary measures of NMJ integrity in a consistent and reproducible way. Use of standardized protocols and parameters should facilitate comparison of the effects of genes and environmental interventions upon the mammalian NMJ.
NOTE: Design, conduct and reporting of animal experiments should take account of current guidelines 24. Such work must be approved in advance by the local animal welfare authority (in our case the Animal Ethics Committee of the University of Sydney).
1. Euthanasia of the Animal and Muscle Dissection
2. Preparing the Muscle for Cryosectioning
NOTE: Optimal structural preservation can be achieved by whole animal perfusion as previously detailed 27, or immersion fixation (for small muscles) as described in optional step 2.1. However, 4% paraformaldehyde fixation can impair subsequent staining with many antibody probes and with fluorescent-BGT. Glutaraldehyde particularly should be avoided. If muscles are not to be fixed they must be immediately snap frozen (proceed to 2.3).
3. Cryosectioning and Fluorescence Staining for En Face Images of NMJs
4. Unbiased Sampling and En Face Imaging of Motor Endplates
5. Measuring the Area of Synaptic Specializations in En Face Images
6. Relative Staining Intensities Compared Using Transverse Optical Sections
NOTE: For this protocol process all muscle samples together and image in a single confocal session. In planning an experiment allow up to 30 min imaging time per muscle sample.
7. Comparing the Postsynaptic Membrane AChR Density Using FRET
NOTE: This protocol assesses the extent to which AChRs are closely packed (<10 nm spacing) in the postsynaptic membrane. The precise donor and acceptor fluorophore combination is critical to this FRET assay. Names and details of the fluorophores are given in the Materials table. Their spectral properties, in relation to FRET, are discussed in our previous papers 14,15.
The protocols described here have enabled us to reliably measure and quantify changes in the properties of the NMJ across a range of conditions, including normal aging and disease states. The methods described for en face NMJ images will allow researchers to compare the area of pre- and postsynaptic specializations and the area of synaptic overlap/alignment. To compare the relative intensity of pre- and postsynaptic proteins the second protocol, which uses transverse optical sections, is preferred. The third protocol specifically tests for changes in the proximity of packing of AChRs in the postsynaptic membrane.
Specificity controls are vital in immunofluorescence microscopy. When using any primary antibody for indirect immunofluorescence it is necessary to first ensure that it binds specifically to its target protein in the muscle sections. Different kinds of tissue processing and fixation can differentially alter the specificity of antibodies. It is important to confirm that immunofluorescence staining (for say rapsyn) really is concentrated with AChR at the motor endplate. Negative control sections must also be inspected to ensure that the antibody binding is specific. For instance, the best negative control for rapsyn immunofluorescence would be sections from rapsyn-/- mice. These should show no endplate staining with anti-rapsyn. Non-specific fluorescence can also arise from endogenous fluorescent chemicals in the tissue (autofluorescence) or from non-specific binding by the fluorescent secondary antibody conjugate. Such fluorescence is often worsened by aldehyde fixation. In addition, TRITC-BGT staining of endplates can sometimes be detected in the FITC fluorescence channel and this fluorescent bleed-through might be confused with specific FITC immunofluorescence. To guard against the latter three forms of non-specific fluorescence, every batch of slides that are stained should include some 'no-primary antibody control' sections (steps 3.7 and 4.6). Images of endplates from these control sections should be compared to those from the experimental slides to ensure that the indirect immunofluorescent staining of NMJs truly reflects the binding of the primary antibody.
Transverse confocal sections are particularly useful for assessing differences in the relative intensity of immunostaining at the synapse. In transverse confocal sections it is easier to judge precise co-localization of synaptic proteins. The crescent-shaped endplate profile represents just a sample cut-through the NMJ in question. However, the background (extrasynaptic) fluorescence is generally lower compared to en face z-projection images. Thus, it can be easier to discriminate 'real' (specific) immunostaining and establish fixed confocal gain and offset values using transverse optical sections 13-15,18. For example, in a mouse model of myasthenia gravis (where endplate AChR staining is markedly reduced) endplates were clearly delineated in transverse optical sections 18,21. Differences in the average intensity of fluorescence at the NMJ are likely to reflect altered density of the target protein within the synaptic specialization. A caveat is that, in some situations, a structural change in the target protein or occlusion of antibody binding by neighboring proteins might explain altered staining intensity.
The design of experiments requires some consideration. In many cases the experiment would aim to test the impact of a transgene, gene knockdown or disease state upon the size of the NMJ. The experimental sample group might then be compared to healthy young (wild-type) mice of the same sex and genetic background. Baseline values for the area of endplate synaptophysin, AChR and synaptic overlap for several muscles are given in Table 1. Sample size will depend upon the degree of animal-to-animal variation within treatment groups and the effect size (difference in means for the experimental versus control groups per standard deviation). When analysis is restricted to good quality images a fair degree of consistency was found in the sample means for endplate areas among healthy 2 month old female C57Bl6J mice (Figure 6A and B). Thus, it was possible to demonstrate significant 30-40% reductions in synaptic area in mice injected with IgG from anti-MuSK-positive myasthenia gravis patients, compared to controls with a sample size of three mice 17,20,32. Elderly mice displayed greater animal-to-animal variation in endplate parameters than young mice 22. Consequently experiments involving aged mice might require larger sample sizes.
If the primary concern is to measure the size of the en face endplate then the gain and offset level settings should be optimized for every individual NMJ. Individual NMJs can vary considerably in the brightness of AChR and synaptophysin staining, particularly when disease states are examined. Moreover the intensity of extra-synaptic (non-specific) fluorescence is often higher and more variable in muscles of aging animals, compared to those of healthy young animals (Figure 5C and D). The 1 to 256 grey-scale should be fully exploited so as to maximize the tonal information that will be retained in the final images. This will involve adjusting the gain and offset levels for every NMJ for which a z-stack is to be collected. Figure 5D shows an example of an NMJ image where tonal information could be critical in defining the boundaries of area of pre- and post-synaptic specializations.
Measurements of synaptic areas can be applied to different muscle preparations and experiments. Most of our measurements of synaptic areas have employed longitudinal cryosections from snap frozen muscles. Freezing the muscle prior to fixation maintains the antigenicity of a wide range of proteins. When compatible with the antigen, paraformaldehyde fixation and sucrose infiltration prior to cryosectioning (step 2.1) can provide better preservation of NMJ structure. Optimal structural preservation might be obtained by cardiac perfusion with paraformaldehyde. Artifacts of freezing and sectioning can be completely avoided by labeling endplates on the surface of the intact muscle and imaging NMJs on fascicles teased from the fixed muscle 21. Regardless of the preparation, the procedures for sampling, imaging and area quantitation remain unchanged (protocol steps 4-5). Consistent application of blind sampling, imaging and analysis protocols (using different operators, different samples of mice and different times), can result in fairly reproducible average values (compare Cheng et al. and Tse results in Table 1).
Endplates have been described as becoming 'fragmented' in a variety of disease states. For example, in aging mouse muscles, sporadic degeneration of a muscle fiber (followed by its regeneration) resulted in remodeling of the pretzel-like endplate AChR plaque to form multiple smaller AChR clusters 6. In mice injected with IgG from anti-MuSK myasthenia gravis patients, fragmentation of the endplate was rather different. The endplate AChR pretzel largely dispersed, leaving behind a constellation of tiny (<4 m2) AChR 'microaggregates' 20,21. These two examples highlight the need to compare the size distributions for AChR clusters at endplates of control versus experimental animals 21.
Other methods have been reported for assessing synaptic area or staining intensity at the NMJ. Motor endplates can sometimes be folded so that the two-dimensional z-projection images used here might underestimate synaptic areas. Three-dimensional confocal reconstructions might provide more accurate measures if absolute synaptic area must be defined 33. A key advantage of the z-projection protocol described here, however, is its relative simplicity, which has permitted large numbers of endplates to be measured from multiple treatment groups and reliable identification of potential changes. The protocol for comparing endplate staining intensities can be adapted for studying changes in the levels of many different synaptic proteins. The method is limited, however, by the requirement that all samples are processed for immunofluorescence then imaged during the same confocal session. A recent study by Yampolsky et al. 5 described a method for measuring endplate AChR density that might help overcome this limitation. In this study, the same fields of endplates were imaged at several different laser power settings. The slope of the relationship between laser power and rhodamine-BGT fluorescence intensity was used to assess relative changes in AChR density at endplates in different mice 5. This method might be useful for comparing AChR intensity in samples imaged at different times over the course of a prolonged study.
AChR-AChR FRET provides specific and complementary information about the organization of endplate AChRs. Electron microscopic autoradiography using 125. I-α-BGT has shown AChRs to be packed tightly with a planar density of 104 m-2 immediately under each presynaptic site of transmitter release, while adjoining membrane infoldings contain much lower densities of AChR 34. AChR-AChR FRET makes it relatively easy to detect (sub-microscopic) changes in AChR packing. A reduction in FRET efficiency reflects a sub-microscopic redistribution of AChRs in the postsynaptic membrane that might not be detected by a change in average BGT fluorescence intensity. Multiple factors might cause a change in the efficiency of FRET. These include the donor-acceptor spacing and relative orientations, as well as the molecular environment 35,36. A reduction in endplate FRET efficiency might possibly arise from a change in the geometry of the AChR lattice. However, most likely it would be due to a reduction in the percentage of AChRs that are packed into the nano-scale postsynaptic molecular lattice 14.
Loss of the connection between motor neurons and muscle fibers seems to be the immediate cause of muscle weakness in motor neuron disease and in sedentary aging 9,22,23. Shared methods and parameters for measuring NMJs should make it easier for different research groups to compare and contrast published findings. The sharing of detailed protocols (and future improvements on them) may help accelerate progress in understanding the mechanisms of NMJ maintenance and how it can be affected in disease states.
The authors have nothing to disclose.
This work was supported by the National Health and Medical Research Council [570930]. Imaging was carried out at the Bosch Institute Advanced Microscopy Facility. Former members of the lab, whose work is cited, are thanked for their contributions to developing these methods.
Scanning confocal microscope | Leica | DM 2000 with TCS SP2 system | Most scanning confocal microscopes should be suitable. |
Zeiss | LSM 510 Meta | ||
Leica | SPE-II | ||
Alexa555-a-bungarotoxin (red-BGT) | Life technologies | B35451 | Used for labelling AChRs |
Alexa647-α-bungarotoxin (far-red-BGT) | Life technologies | B35450 | Far red fluorescence: barely visible through the eyepiece |
rabbit anti-synaptophysin | Life technologies | 18-0130 | Different batches of primary antibody differ in effective working dilution |
FITC-anti-rapsyn mab1234 | Milipore | FCMAB134F | Monoclonal antibody conjugated to FITC |
FITC-donkey anti-rabbit IgG | Jackson | 711-095-152 | Polyclonal secondary antibodies can vary in quality according to source and batch |
Optimal Cutting Temperature compound (O.T.C.) | ProSciTech | IA018 | Cryostat embedding matrix for freezing muscles |
DABCO | Sigma | 10981 | Mounting medium that slows photobleaching of fluorophores |